CFCS1

Matlab Programming

Miles Osborne

School of Informatics
University of Edinburgh
miles@inf.ed.ac.uk

February 23, 2010

Miles Osborne CFCS1 1


miles@inf.ed.ac.uk

@ Data Types

© Expressions
© Control Loops
© Functions

© 'nput-Output

Miles Osborne CFCS1 2



Data Types

Data Types

Literals: 10, 10.5, -3 etc.
Booleans: 0 or 1
Vectors: (see class).
Matrices: (see class).

Strings: 'hello | am a string’

Miles Osborne CFCS1 3



Expressions

Expressions

Here are some example expressions:

octave-2.9.18:1> 1

ans = 1

octave-2.9.18:2> 1 + 1

ans = 2

octave-2.9.18:3> a =1

a= 1

octave-2.9.18:4> a = a + 1
a= 2

octave-2.9.18:5> a

a= 2

Miles Osborne CFCS1 4



Expressions

Expressions

More example expressions:

octave-2.9.18:9> a = 10 ; b = 11
b= 11

octave-2.9.18:10> % A comment
octave-2.9.18:10>

octave-2.9.18:10> exp(a)

ans = 2.2026e+04

octave-2.9.18:11> b = (a + 10) * 12;
octave-2.9.18:12>

Miles Osborne CFCS1 5



Expressions

Comparisons

EXP COMPARISON EXP

== equal to

~= not equal to

< less than

<= less than or equal to

> greater than
>= greater than or equal to

a>10

Miles Osborne CFCS1 6



Expressions

Logical Operators

and
or
not

TR

(a==10) | (b<0)

Miles Osborne CFCS1 7



Expressions

IF Statements

if CONDITION
EXP
EXP

end

@ A CONDITION is a test which evaluates to true or false.

@ The reservered word end terminates the set of statements.

if (a > b)
disp(’a is greater than b’);
a=1;

end;

Miles Osborne CFCS1 8



Expressions

IF Statements

if CONDITION
EXP

else
EXP

end

@ The reservered word else specifies the expressions that are
evaluated if the test is false.

if (a > b)

disp(’a is greater than b’)
else

disp(’b is greater than a’)
end;

Miles Osborne CFCS1 9



Expressions

IF Statements

if CONDITION
EXP

elseif CONDITION
EXP

else
EXP

end

@ The reservered word elseif specifies another test that is
evaluated if the previous test is false.

Miles Osborne CFCS1 10



Expressions

IF Statements

if (a > b)

disp(’a is greater than b’)
elseif (a == b)

disp(’b is a’)
else

disp(’b is greater than a)
end;

@ The elseif statement allows for if statements to be chained
together.

Miles Osborne CFCS1 11



Control Loops

FOR-loop

for INDEX = EXP: FINISH
EXP
EXP

end

@ FOR loops execute a block of code a fixed number of times.
@ FINISH is a test for when we stop.

@ FOR loops (and loops in general) can be nested.

Miles Osborne CFCS1 12



Control Loops

FOR-loop

for a =0: 5
disp(’hello?’)
end;

Miles Osborne CFCS1 13



Control Loops

WHILE-loop

while CONDITION
EXP
EXP

end

@ WHILE loops execute a block of code a variable number of
times.

@ A while loop is a generalised for loop.

@ To break out of a loop mid-way, use the break statement.

Miles Osborne CFCS1



Control Loops

WHILE-loop

a = 0;
while a < 10
b =1;

a=a+1;
end;

Miles Osborne CFCS1 15



Functions

Functions

Typically, we want to specify a repeated operation:

@ A MATLAB function is stored in a file ending with a .m
extension.

@ The function name must be the same as the file name (less
extension).

@ MATLAB functions have two parameter lists:

@ A list of arguments.
@ A list of results.

@ Arguments can be changed, but that is bad pracice.

@ Arguments are copied when a function is invoked.

Miles Osborne CFCS1 16



Functions

Functions

function [output_list] = function_name(input_list)

@ The first word must be function.
@ Optional arguments are enclosed in square brackets.
o (If there are no arguments, then the brackets are dropped)

@ Arguments are separated using commas.

function addtwo(x,y)
% add x and y

X+y

Miles Osborne CFCS1 17



Functions

Functions

function [result] = addtwo(x,y)
% add x and y

result = x + y

@ Here we have returned the result of adding x and y.
@ Comments after the function are printed eg:
help addtwo

@ All variables in a function are local (unless global):

global b;

Miles Osborne CFCS1 18



Input-Output

Writing Output

@ The disp function can write simple messages:
disp(a)

@ The c-like printf function can write more complex output:
printf(’%d %d\n’,a,b);

Miles Osborne CFCS1 19



Input-Output

Reading Input

@ The input function can read simple input:
b = input(’type a number:’)
@ The c-like sscanf function can read more complex output:

s =’2.71 3.14°;
a = sscanf(s,’%f’)

@ This creates a two-element vector from the string
representation.

Miles Osborne CFCS1 20



Input-Output

@ Files have names: the actual name you see.
@ Files are manipulated using file handles.
@ A file handle indicates the position within a file.

@ Files have modes: append to end, write from scratch etc.

Miles Osborne CFCS1 21



Input-Output

Files: Writing

(Example taken fom Web)

output = fopen(’myfile.txt’,’wt’); %’wt’ means write text
if (output < 0)
error(’failed to open myfile.txt’);
end;
a = 10;
fprintf (output, ’A line of text %d\n’,a);
fclose(output);

Miles Osborne CFCS1 22



Input-Output

Files: Reading

@ To read from a file, use fscanf

input = fopen(’myfile.txt’,’rt’); 7% ’rt’ means read text
if (input < 0)
error(’failed to open myfile.txt’);
end;
a = fscanf (input, ’%d\n’);
disp(a);
fclose(input);

Miles Osborne CFCS1 23



Input-Output

Summary

@ MATLAB is a fairly standard programming language.
@ There is a lot of online help.
o MATLAB is quite quirky.

Miles Osborne CFCS1 24



	Data Types
	Expressions
	Control Loops
	Functions
	Input-Output

