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Mean

The mean of a random variable X is its average value, normally
denoted by µ.

Definition: Mean

If X is a discrete random variable and f (x) is the value of its
probability distribution at x , then the mean of X is:

µ =
∑
x

x · f (x)

Mean and variance are expectations of a random variable. This will
be discussed in more detail in subsequent lectures.
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Variance

Definition: Variance

If X is a discrete random variable and f (x) is the value of its
probability distribution at x , and µ is its mean then:

σ2 = var(X ) =
∑
x

(x − µ)2f (x)

is the variance of X .

Intuitively, var(X ) reflects the spread or dispersion of a
distribution, i.e., how much it diverges from the mean.

σ is called the standard deviation of X .
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Example

Let X be a discrete random variable with the distribution:

f (x) =


1
8 for x = 0
3
8 for x = 1
3
8 for x = 2
1
8 for x = 3

The mean and variance of X are:

µ =
∑

x

x · f (x) = 0 · 1

8
+ 1 · 3

8
+ 2 · 3

8
+ 3 · 1

8
=

3

2

var(X ) =
∑

x

(x − µ)2f (x)

= (0− 3

2
)2 · 1

8
+ (1− 3

2
)2 · 3

8
+ (2− 3

2
)2 · 3

8
+ (3− 3

2
)2 · 1

8
= 0.86
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Histogram with mean and standard deviation for the previous
example:
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Uniform Distribution

Definition: Uniform Distribution

A random variable X has a discrete uniform distribution iff its
probability distribution is given by:

f (x) =
1

k
for x = x1, x2, . . . , xk

where xi 6= xj when i 6= j .

The mean and variance of the uniform distribution are:

µ =
k∑

i=1

xi ·
1

k
σ2 =

k∑
i=1

(xi − µ)2
1

k
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Binominal Distribution

Often we are interested in experiments with repeated trials:

assume there is a fixed number of trials;

each of the trial can have two outcomes (e.g., success and
failure, head and tail);

the probability of success and failure is the same for each trial:
θ and 1− θ;

the trials are all independent.

Then the probability of getting x successes in n trials in a given
order is θx(1− θ)n−x . And there are

(n
x

)
different orders, so the

overall probability is
(n
x

)
θx(1− θ)n−x .
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Binominal Distribution

Definition: Binomial Distribution

A random variable X has a binominal distribution iff its probability
distribution is given by:

b(x ; n, θ) =

(
n

x

)
θx(1− θ)n−x for x = 0, 1, 2, . . . , n

Example

The probability of getting five heads and seven tail in 12 flips of a
balanced coin is:

b(5; 12,
1

2
) =

(
12

5

)
(
1

2
)5(1− 1

2
)12−5
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Binominal Distribution
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Binominal Distribution

If we invert successes and failures (or heads and tails), then the
probability stays the same. Therefore:

Theorem: Binomial Distribution

b(x ; n, θ) = b(n − x ; n, 1− θ)

Two other important properties of the binomial distribution are:

Theorem: Binomial Distribution

The mean and the variance of the binomial distribution are:

µ = nθ and σ2 = nθ(1− θ)
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Mid-lecture Problem

A study found that 80% of all people over 60 years of age wear
glasses. If a random sample of 6 people over 60 years of age is
selected, what’s the probability that:

1 exactly 4 people will wear glasses;

2 at most 2 people will wear glasses;

3 at least 2 people will wear glasses.
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Uniform Distribution

Definition: Uniform Distribution

A random variable X has a continuous uniform distribution iff its
probability density is given by:

u(x ;α, β) =

{ 1
β−α for α < x < β

0 elsewhere

The mean and variance of the uniform distribution are:

µ =
α + β

2
σ2 =

1

12
(α− β)2
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Uniform Distribution
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Uniform distribution for α = 1 and β = 4.
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Exponential Distribution

Definition: Exponential Distribution

A random variable X has an exponential distribution iff its
probability density is given by:

g(x ; θ) =

{
1
θe−x/θ for x > 0
0 elsewhere

The mean and variance of the exponential distribution are:

µ = θ σ2 = θ2
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Exponential Distribution

x

4 52

0.15

3

0.2

0.35

0.3

1

0.1

0

0.25

0.05

Exponential distribution for θ = {0.5, 1, 2, 3}.
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Normal Distribution

Definition: Normal Distribution

A random variable X has a normal distribution iff its probability
density is given by:

n(x ;µ, σ) =
1

σ
√

2π
e−

1
2
( x−µ

σ
)2 for −∞ < x < ∞

Normally distributed random variables are ubiquitous in
probability theory;

many measurements of physical, biological, or cognitive
processes yield normally distributed data;

such data can be modeled using a normal distributions
(sometimes using mixtures of several normal distributions).
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Standard Normal Distribution
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Normal Distribution

Definition: Standard Normal Distribution

The normal distribution with µ = 0 and σ = 1 is referred to as the
standard normal distribution:

n(x ; 0, 1) =
1√
2π

e−
1
2
x2

Theorem: Standard Normal Distribution

If a random variable X has a normal distribution, then:

P(|x − µ| < σ) = 0.6826

P(|x − µ| < 2σ) = 0.9544

This follows from Chebyshev’s Theorem (later in this course).
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Normal Distribution

Theorem: Z -Scores

If a random variable X has a normal distribution with the mean µ
and the standard deviation σ then:

Z =
X − µ

σ

has the standard normal distribution.

This conversion is often used to make results obtained by different
experiments comparable: convert the distributions to Z -scores.
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Summary

The uniform distribution assigns each value the same
probability;

The binomial distributions models an experiment with a fixed
number of independent binary trials, each with the same
probability;

The normal distribution models the data generated by
measurements of physical, biological, or cognitive processes;

Z -scores can be used to convert a normal distribution into the
standard normal distribution.
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