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Sample Spaces

Sample Spaces and Everts _ [SMTGRISPSCeS Sample Spaces and Events
Terminology rminology
Example: Finite Sample Space
Terminology for probability theory: Roll two dice, each with numbers 1-6. Sample space:
° ;)fperiment, process of observation or measurement; e.g., coin Si={(xy)x=12,...,6;y =1,2,...,6}
P
@ outcome: result obtained through an experiments; e.g., coin Alternative sample space for this experiment: sum of the dice:
shows tail;

S ={x|x=2,3,...,12}

sample space: set of all possible outcomes of an experiment;
e.g., sample space for coin flip: S = {H, T}.

For now, we will only deal with discrete sample spaces (i.e., sample Example: Infinite Sample Space

spaces whose elements can be mapped the set of integers). Flip a coin until head appears for the first time:

Sy ={H,TH, TTH, TTTH, TTTTH,...}
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Events

Often we are not interested in individual outcomes, but in events.
An event is a subset of a sample space.

With respect to Sy, describe the event B of rolling a total of 7
with the two dice.

B ={(1,6),(2,5),(3.4),(4,3),(5,2).(6,1)}

die 1
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Events Venn Diagrams

Often we are interested in combinations of two or more events.
This can be represented using set theoretic operations. Assume a
sample space S and two events A and B:

o complement A (also A'): all elements of S that are not in A;

o subset A C B: all elements of A are also elements of B;

@ union AU B: all elements of S that are in A or B;
o intersection AN B: all elements of S that are in A and B.

These operations can be represented graphically using Venn
diagrams.

ANB
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Probabilty of an Event Probability of an Event

Axioms of Probability

Probability of an Event

Events are denoted by capital letters A, B, C, etc. The probability Theorem: Probability of an Event
of and event A is denoted by P(A). If Ais an event in a discrete sample space S and Oy, 0,, O0;, .. .,
are the individual outcomes comprising A, then P(A) = P(01) +

Axioms of Probability P(02) + P(03) + ...

© The probability of an event is a nonnegative real number:
P(A) >0 forany AC S.
Q P(S)=1.

. . We flip a fair coin twice. What's the probability of obtaining at least one
© If A1, Az, As, ..., is a sequence of mutually exclusive events of head?
S, then: The sample space is S = {HH, HT, TH, TT}. As the coin is fair, all
-~ outcomes are equally likely: P(HH) = P(HT) = P(TH) = P(TT) = 1.
P(ALUAUAs U...) = P(A1) + P(A2) + P(A3) + ... The event of obtaining at least one head is A= {HH, HT, TH} and
P(A) = P(HH) + P(HT) + P(TH) =4 + 3 + 1 = 3.
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Probability of ar Probability of an Event

Probability of an Event Probability of an Event

This leads us to the following special case of the previous theorem:

Theorem: Equally Likely Outcomes Assume all letters occur equally often in English. Then what's the

If an experiment can result in N equally likely outcomes, and if n probability of a three-letter word only consisting of vowels?
of these outcomes constitute an event A, then P(A) = f.

There are N = 26% three letter words. The set of vowels is
{a.e,i,0,u}. Then the event A of having a three letter word

This theorem is consistent with the frequency interpretation of consisting only of vowels is A = {aaa, aae, aai, aao, ... }. The size
probability theory: the probability of an event is the proportion of of this set is n = 53. By the theorem of equally likely outcomes,

X . ¥ X 3
the time that events of the same kind will occur in the long run. P(A)=§ = %g =0.00711.

This will become important later in this course.
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Mid-lecture Problem

Probability of an Event

Rules of Probability

A five-card poker hand dealt from a deck of 52 playing cards is
said to be a full house if it consists of three of a kind a pair. If all
the five-card hands are equally likely, what is the probability of
being dealt a full house?
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Examples and Explanations

© What's the probability of a three letter word not consisting of
three vowels? P(A) =1 — P(A) =1 —0.00711 = 0.99289,
where A is the set of all three letter words containing only
vowels (see example above).

@ This follows from set theory: SU 0 = S, hence
P(S) + P(0) = P(S), hence P(§) = 0.

@ Let A= {HT, TH}, the event of getting exactly one head
when flipping a coin twice, and B = {HH, HT, TH}, the
event of getting at least one head. Then P(A) = % and
P(B) =2, i.e., P(A) < P(B).

@ Again, this follows from set theory: § C A C S for any
event A. Hence P()) < A < P(S), and therefore 0 < A < 1.

Frank Keller  Computational Foundations of Cognitive Science

Theorems: Rules of Probability

@ If Aand A are complementary events in the sample space S,

then P(A) = 1 — P(A).

@ P(0) = 0 for any sample space S.

@ If A and B are events in a sample space S and A C B, then
P(A) < P(B).

Q 0 < P(A) <1 for any event A.
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Probability of an Event

Addition Rule

Axiom 3 allows us to add the probabilities of mutually exclusive
events. This is called the special addition rule. But what about
events that are not mutually exclusive?

Theorem: General Addition Rule
If A and B are two events in a sample space S, then:

P(AU B) = P(A) + P(B) — P(AN B)

lllustrated using a Venn
diagram: shaded area occurs
twice and has to be
subtracted.
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Probabilty of an Event

Addition Rule

Language is lateralized in the brain: in most people, language processing
mainly takes place in the left hemisphere. In some people, however,
language is right-lateralized, i.e., it is mainly processed in the right
hemisphere.

Assume the probability of being left-handed is P(A) = 0.15, and the
probability of language being right-lateralized is P(B) = 0.05.

If A and B are mutually exclusive then the probability of being either
left-handed or right-lateralized is P(AU B) = P(A) + P(B) = 0.2.
However, the two events are not mutually exclusive: there are
left-handers that are right-lateralized (in fact, this is more likely in
left-handers than in right-handers). We know that P(AN B) = 0.04.

Now the probability of being left-handed or right-lateralized is
P(AUB) = P(A) + P(B) — P(AN B) = 0.16.
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Axioms of Probability
Mid-lecture Problem
Probability of an Event

Summary

@ Sample space S contains all possible outcomes of an
experiment; events A and B are subsets of S;
o for equally likely outcomes: P(A) = ;
o rules of probability:
o P(A)=1- P(A);
e P()=0;
o if AC B, then P(A) < P(B);
s 0<P(B)<1;

o addition rule: P(AU B) = P(A) 4+ P(B) — P(AN B).
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