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Sum and Difference

In Matlab, matrices are input as lists of numbers; columns are
separated by spaces or commas, rows by semicolons or newlines:

> A = [2, 1, 0, 3; -1, 0, 2, 4; 4, -2, 7, 0];
> B = [-4, 3, 5, 1

2, 2, 0, -1
3, 2, -4, 5];

> C = [1 1; 2 2];

The sum and difference of two matrices can be computed using
the operators + and -:

> disp(A + B);
-2 4 5 4
1 2 2 3
7 0 3 5
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For sum and difference, matrices have to have the same
dimensions:

> disp(A - B);
6 -2 -5 2

-3 -2 2 5
1 -4 11 -5

> disp(A + C);
error: operator +: nonconformant arguments
(op1 is 3x4, op2 is 2x2)
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Matlab uses the functions columns(A), rows(A), and size(A)
for determining the size of a matrix:

> disp(columns(A));
4

> disp(rows(A));
3

> disp(size(A));
3 4

A matrix can be multiplied with a scalar using the operator *:

> disp(A * 2);
4 2 0 6

-2 0 4 8
8 -4 14 0
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Zero and Identity Matrix

The command zeros(n) generates a zero matrix of size n. Use
zeros(n, m) if the matrix isn’t square:

> disp(zeros(2));
0 0
0 0

> disp(zeros(2, 4));
0 0 0 0
0 0 0 0

The command ones(n) and ones(n, m) construct a matrix of
ones in the same way. To generate the identity matrix, use eye(n):

> disp(eye(3));
1 0 0
0 1 0
0 0 1
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Diagonal Matrices

To extract the main diagonal of a matrix A use diag(A):

> A = [3 1 -7; 2 4 11; 3 3 9];
> disp(diag(A));

3
4
9

To create a matrix based on a diagonal use:

> A = diag([1 2 3]);
> disp(A);

1 0 0
0 2 0
0 0 3
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Use triu(A) to get the upper triangular part of A, and tril(A)
to get the lower triangular part.

> A = [3 1 -7; 2 4 11; 3 3 9];
> disp(triu(A));

3 1 -7
0 4 11
0 0 9

> disp(tril(A));
3 0 0
2 4 0
3 3 9

You can also use triu(A, k) to get the elements above the main
diagonal (k > 0) or below the main diagonal (k < 0).
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A block matrix is a matrix that can be partitioned into smaller
matrices called blocks. We can generate this in Matlab by
concatenating the blocks:

> A = [1, 1; 1 1];
> B = [2, 2; 2 2];
> disp([A B A]);

1 1 2 2 1 1
1 1 2 2 1 1

> disp([A B; A]);
error: number of columns must match (2 != 4)
> disp([A B; B A]);

1 1 2 2
1 1 2 2
2 2 1 1
2 2 1 1
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Alternatively, we can generate a block matrix by repeating the
same block multiple times using repmat(A) or repmat(A, k):

> A = [1, 2; 3 4];
> disp(repmat(A, 2));

1 2 1 2
3 4 3 4
1 2 1 2
3 4 3 4

> disp(repmat(A, 2, 3));
1 2 1 2 1 2
3 4 3 4 3 4
1 2 1 2 1 2
3 4 3 4 3 4
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To extract the element (A)ij of matrix A, use A(i, j) in Matlab:

> A = [2, 1, 0, 3; -1, 0, 2, 4; 4, -2, 7, 0];
> disp(A(1, 4));
3

> disp(A(2, 3));
2

To extract the row vector ri (A), use A(i, :), for the column
vector cj(A), use A(:, j):

> disp(A(1, :));
2 1 0 3

> disp(A(:, 4));
3
4
0
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Vectors can be concatenated to form a matrix:

> v1 = [8; 2; 1; 4]; v2 = [3; 9; 11; 6];
> v3 = [0; 2; 2; 4];
> A = [v1, v2, v3]; disp(A);

8 3 0
2 9 2
1 11 2
4 6 4

We can also change entries using A(i, j) = n or delete rows or
columns using A(i, :) = [] and A(:, j) = []:

> A(1, :) = []; disp(A);
2 9 2
1 11 2
4 6 4
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Mid-lecture Problem

Suppose you have the matrix A =

1 2 3
4 5 6
7 8 9

.

How do you use Matlab to turn it into B =

7 8 9
7 8 9
4 5 6

?
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The operator * can also be used to multiply two matrices. Again,
the dimensions have to agree:

> A = [ 2 1 0;
-1 0 2;
4 -2 0];

> B = [1 2;
2 1;
0 6];

> disp(A * B);
4 5

-1 10
0 6

> disp(B * A);
error: operator *: nonconformant arguments
(op1 is 3x2, op2 is 3x3)
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There is also the operator .*, which multiplies matrices element by
element:

> C = [0 0 1; 2 1/2 1; 1 1 5];
> disp(A .* C);

0 0 0
-2 0 2
4 -2 0

This has no equivalent in mathematics, but is useful for
programming (other elementwise operators exist, e.g., ./ and .^
for elementwise division and exponentiation).
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The matrix multiplication operator * can be used to multiply a
matrix with a vector:

> u = [1; 2; 1];
> v = [0; 1; -2];
> disp(A * v);

1
-4
-2

And the array multiplication operator .* can also be applied to
vectors:

> disp(u .* v);
0
2
-2
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To compute Av, we can also extract the column vectors of A and
multiply them with the components of v:

> disp(v(1) * A(:, 1) + v(2) * A(:, 2) + v(3) * A(:, 3));
1
-4
-2

We can check the linearity properties of the product with a vector:

> disp(A * (1/2 * v)); disp(1/2 * (A * v));
0.5 0.5
-2 -2
-2 -2

> disp(A * (u + v)); disp(A * u + A * v);
5 5
-3 -3
-2 -2
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Mid-lecture Problem

Suppose you have the matrix A =


3.5 7.4 3.2
1.5 3.9 4.0
9.2 4.8 4.2
1.0 3.1 0.3

.

Assume that each of the rows in the matrix represent a series of
measurement for a given experiment. Use Matlab to compute the
mean for each experiment, and assign the result to a vector.
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Transpose

The transpose of a matrix can be computed using ’. To compute
the trace, use the function trace:

> A = [3 1 -7; 2 4 11; 3 3 9];
> disp(A’);

3 2 3
1 4 3

-7 11 9
> disp(trace(A’));
16

With ’ we turn column vectors into row vectors and vice versa:

> disp(u’);
1 2 1

> disp(v’);
0 1 -2
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Symmetric Matrices

We get a symmetric matrix by multiplying it with its transpose:

> disp(A * A’);
59 -67 -51

-67 141 117
-51 117 99

> disp(A’ * A);
22 20 28
20 26 64
28 64 251

To check whether a matrix is symmetric use issymmetric(A):

> disp(issymmetric(A));
0
> disp(issymmetric(A * A’));
3
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Inner and Outer Product

The inner product uTv and the outer product uvT can be
computed using matrix multiplication and the transpose operator:

> disp(u’ * v);
0

> disp(u * v’);
0 1 -2
0 2 -4
0 1 -2

For the inner product, the function dot can be used, which
computes the dot product:

> disp(dot(u, v));
0
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Summary

Matrix sum and difference: A + B, A - B;

zero and identity matrix: zero(n) and eye(n);

product of two matrices: A * B;

product of the elements of a matrix: A .* B;

product of a matrix and a scalar, of a matrix and a vector:
A * c, A * v;

extracting matrix elements and row and column vectors:
A(i, j), A(i, :), A(:, j);

transpose and trace: A’, trace(A);

inner product and outer product: u’ * v, u * v’.
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