
Basic Matrix Operations
Special Matrices
Matrix Products

Transpose, Inner and Outer Product

Computational Foundations of Cognitive Science
Lecture 11: Matrices in Matlab

Frank Keller

School of Informatics
University of Edinburgh
keller@inf.ed.ac.uk

February 23, 2010

Frank Keller Computational Foundations of Cognitive Science 1

Basic Matrix Operations
Special Matrices
Matrix Products

Transpose, Inner and Outer Product

1 Basic Matrix Operations
Sum and Difference
Size; Product with Scalar

2 Special Matrices
Zero and Identity Matrix
Diagonal and Triangular Matrices
Block Matrices

3 Matrix Products
Row and Column Vectors
Mid-lecture Problem
Matrix Product
Product with Vector

4 Transpose, Inner and Outer Product
Transpose
Symmetric Matrices
Inner and Outer Product

Reading: McMahon, Ch. 2

Frank Keller Computational Foundations of Cognitive Science 2

Basic Matrix Operations
Special Matrices
Matrix Products

Transpose, Inner and Outer Product

Sum and Difference
Size; Product with Scalar

Sum and Difference

In Matlab, matrices are input as lists of numbers; columns are
separated by spaces or commas, rows by semicolons or newlines:

> A = [2, 1, 0, 3; -1, 0, 2, 4; 4, -2, 7, 0];
> B = [-4, 3, 5, 1

2, 2, 0, -1
3, 2, -4, 5];

> C = [1 1; 2 2];

The sum and difference of two matrices can be computed using
the operators + and -:

> disp(A + B);
-2 4 5 4
1 2 2 3
7 0 3 5

Frank Keller Computational Foundations of Cognitive Science 3

Basic Matrix Operations
Special Matrices
Matrix Products

Transpose, Inner and Outer Product

Sum and Difference
Size; Product with Scalar

Sum and Difference

For sum and difference, matrices have to have the same
dimensions:

> disp(A - B);
6 -2 -5 2

-3 -2 2 5
1 -4 11 -5

> disp(A + C);
error: operator +: nonconformant arguments
(op1 is 3x4, op2 is 2x2)

Frank Keller Computational Foundations of Cognitive Science 4



Basic Matrix Operations
Special Matrices
Matrix Products

Transpose, Inner and Outer Product

Sum and Difference
Size; Product with Scalar

Size; Product with Scalar

Matlab uses the functions columns(A), rows(A), and size(A)
for determining the size of a matrix:

> disp(columns(A));
4

> disp(rows(A));
3

> disp(size(A));
3 4

A matrix can be multiplied with a scalar using the operator *:

> disp(A * 2);
4 2 0 6

-2 0 4 8
8 -4 14 0

Frank Keller Computational Foundations of Cognitive Science 5

Basic Matrix Operations
Special Matrices
Matrix Products

Transpose, Inner and Outer Product

Zero and Identity Matrix
Diagonal and Triangular Matrices
Block Matrices

Zero and Identity Matrix

The command zeros(n) generates a zero matrix of size n. Use
zeros(n, m) if the matrix isn’t square:

> disp(zeros(2));
0 0
0 0

> disp(zeros(2, 4));
0 0 0 0
0 0 0 0

The command ones(n) and ones(n, m) construct a matrix of
ones in the same way. To generate the identity matrix, use eye(n):

> disp(eye(3));
1 0 0
0 1 0
0 0 1

Frank Keller Computational Foundations of Cognitive Science 6

Basic Matrix Operations
Special Matrices
Matrix Products

Transpose, Inner and Outer Product

Zero and Identity Matrix
Diagonal and Triangular Matrices
Block Matrices

Diagonal Matrices

To extract the main diagonal of a matrix A use diag(A):

> A = [3 1 -7; 2 4 11; 3 3 9];
> disp(diag(A));

3
4
9

To create a matrix based on a diagonal use:

> A = diag([1 2 3]);
> disp(A);

1 0 0
0 2 0
0 0 3

Frank Keller Computational Foundations of Cognitive Science 7

Basic Matrix Operations
Special Matrices
Matrix Products

Transpose, Inner and Outer Product

Zero and Identity Matrix
Diagonal and Triangular Matrices
Block Matrices

Triangular Matrices

Use triu(A) to get the upper triangular part of A, and tril(A)
to get the lower triangular part.

> A = [3 1 -7; 2 4 11; 3 3 9];
> disp(triu(A));

3 1 -7
0 4 11
0 0 9

> disp(tril(A));
3 0 0
2 4 0
3 3 9

You can also use triu(A, k) to get the elements above the main
diagonal (k > 0) or below the main diagonal (k < 0).

Frank Keller Computational Foundations of Cognitive Science 8



Basic Matrix Operations
Special Matrices
Matrix Products

Transpose, Inner and Outer Product

Zero and Identity Matrix
Diagonal and Triangular Matrices
Block Matrices

Block Matrices

A block matrix is a matrix that can be partitioned into smaller
matrices called blocks. We can generate this in Matlab by
concatenating the blocks:

> A = [1, 1; 1 1];
> B = [2, 2; 2 2];
> disp([A B A]);

1 1 2 2 1 1
1 1 2 2 1 1

> disp([A B; A]);
error: number of columns must match (2 != 4)
> disp([A B; B A]);

1 1 2 2
1 1 2 2
2 2 1 1
2 2 1 1

Frank Keller Computational Foundations of Cognitive Science 9

Basic Matrix Operations
Special Matrices
Matrix Products

Transpose, Inner and Outer Product

Zero and Identity Matrix
Diagonal and Triangular Matrices
Block Matrices

Block Matrices

Alternatively, we can generate a block matrix by repeating the
same block multiple times using repmat(A) or repmat(A, k):

> A = [1, 2; 3 4];
> disp(repmat(A, 2));

1 2 1 2
3 4 3 4
1 2 1 2
3 4 3 4

> disp(repmat(A, 2, 3));
1 2 1 2 1 2
3 4 3 4 3 4
1 2 1 2 1 2
3 4 3 4 3 4

Frank Keller Computational Foundations of Cognitive Science 10

Basic Matrix Operations
Special Matrices
Matrix Products

Transpose, Inner and Outer Product

Row and Column Vectors
Mid-lecture Problem
Matrix Product
Product with Vector

Row and Column Vectors

To extract the element (A)ij of matrix A, use A(i, j) in Matlab:

> A = [2, 1, 0, 3; -1, 0, 2, 4; 4, -2, 7, 0];
> disp(A(1, 4));
3

> disp(A(2, 3));
2

To extract the row vector ri (A), use A(i, :), for the column
vector cj(A), use A(:, j):

> disp(A(1, :));
2 1 0 3

> disp(A(:, 4));
3
4
0

Frank Keller Computational Foundations of Cognitive Science 11

Basic Matrix Operations
Special Matrices
Matrix Products

Transpose, Inner and Outer Product

Row and Column Vectors
Mid-lecture Problem
Matrix Product
Product with Vector

Row and Column Vectors

Vectors can be concatenated to form a matrix:

> v1 = [8; 2; 1; 4]; v2 = [3; 9; 11; 6];
> v3 = [0; 2; 2; 4];
> A = [v1, v2, v3]; disp(A);

8 3 0
2 9 2
1 11 2
4 6 4

We can also change entries using A(i, j) = n or delete rows or
columns using A(i, :) = [] and A(:, j) = []:

> A(1, :) = []; disp(A);
2 9 2
1 11 2
4 6 4

Frank Keller Computational Foundations of Cognitive Science 12



Basic Matrix Operations
Special Matrices
Matrix Products

Transpose, Inner and Outer Product

Row and Column Vectors
Mid-lecture Problem
Matrix Product
Product with Vector

Mid-lecture Problem

Suppose you have the matrix A =

1 2 3
4 5 6
7 8 9

.

How do you use Matlab to turn it into B =

7 8 9
7 8 9
4 5 6

?

Frank Keller Computational Foundations of Cognitive Science 13

Basic Matrix Operations
Special Matrices
Matrix Products

Transpose, Inner and Outer Product

Row and Column Vectors
Mid-lecture Problem
Matrix Product
Product with Vector

Matrix Product

The operator * can also be used to multiply two matrices. Again,
the dimensions have to agree:

> A = [ 2 1 0;
-1 0 2;
4 -2 0];

> B = [1 2;
2 1;
0 6];

> disp(A * B);
4 5

-1 10
0 6

> disp(B * A);
error: operator *: nonconformant arguments
(op1 is 3x2, op2 is 3x3)

Frank Keller Computational Foundations of Cognitive Science 14

Basic Matrix Operations
Special Matrices
Matrix Products

Transpose, Inner and Outer Product

Row and Column Vectors
Mid-lecture Problem
Matrix Product
Product with Vector

Matrix Product

There is also the operator .*, which multiplies matrices element by
element:

> C = [0 0 1; 2 1/2 1; 1 1 5];
> disp(A .* C);

0 0 0
-2 0 2
4 -2 0

This has no equivalent in mathematics, but is useful for
programming (other elementwise operators exist, e.g., ./ and .^
for elementwise division and exponentiation).

Frank Keller Computational Foundations of Cognitive Science 15

Basic Matrix Operations
Special Matrices
Matrix Products

Transpose, Inner and Outer Product

Row and Column Vectors
Mid-lecture Problem
Matrix Product
Product with Vector

Product with Vector

The matrix multiplication operator * can be used to multiply a
matrix with a vector:

> u = [1; 2; 1];
> v = [0; 1; -2];
> disp(A * v);

1
-4
-2

And the array multiplication operator .* can also be applied to
vectors:

> disp(u .* v);
0
2
-2

Frank Keller Computational Foundations of Cognitive Science 16



Basic Matrix Operations
Special Matrices
Matrix Products

Transpose, Inner and Outer Product

Row and Column Vectors
Mid-lecture Problem
Matrix Product
Product with Vector

Product with Vector

To compute Av, we can also extract the column vectors of A and
multiply them with the components of v:

> disp(v(1) * A(:, 1) + v(2) * A(:, 2) + v(3) * A(:, 3));
1
-4
-2

We can check the linearity properties of the product with a vector:

> disp(A * (1/2 * v)); disp(1/2 * (A * v));
0.5 0.5
-2 -2
-2 -2

> disp(A * (u + v)); disp(A * u + A * v);
5 5
-3 -3
-2 -2

Frank Keller Computational Foundations of Cognitive Science 17

Basic Matrix Operations
Special Matrices
Matrix Products

Transpose, Inner and Outer Product

Row and Column Vectors
Mid-lecture Problem
Matrix Product
Product with Vector

Mid-lecture Problem

Suppose you have the matrix A =


3.5 7.4 3.2
1.5 3.9 4.0
9.2 4.8 4.2
1.0 3.1 0.3

.

Assume that each of the rows in the matrix represent a series of
measurement for a given experiment. Use Matlab to compute the
mean for each experiment, and assign the result to a vector.

Frank Keller Computational Foundations of Cognitive Science 18

Basic Matrix Operations
Special Matrices
Matrix Products

Transpose, Inner and Outer Product

Transpose
Symmetric Matrices
Inner and Outer Product

Transpose

The transpose of a matrix can be computed using ’. To compute
the trace, use the function trace:

> A = [3 1 -7; 2 4 11; 3 3 9];
> disp(A’);

3 2 3
1 4 3

-7 11 9
> disp(trace(A’));
16

With ’ we turn column vectors into row vectors and vice versa:

> disp(u’);
1 2 1

> disp(v’);
0 1 -2

Frank Keller Computational Foundations of Cognitive Science 19

Basic Matrix Operations
Special Matrices
Matrix Products

Transpose, Inner and Outer Product

Transpose
Symmetric Matrices
Inner and Outer Product

Symmetric Matrices

We get a symmetric matrix by multiplying it with its transpose:

> disp(A * A’);
59 -67 -51

-67 141 117
-51 117 99

> disp(A’ * A);
22 20 28
20 26 64
28 64 251

To check whether a matrix is symmetric use issymmetric(A):

> disp(issymmetric(A));
0
> disp(issymmetric(A * A’));
3

Frank Keller Computational Foundations of Cognitive Science 20



Basic Matrix Operations
Special Matrices
Matrix Products

Transpose, Inner and Outer Product

Transpose
Symmetric Matrices
Inner and Outer Product

Inner and Outer Product

The inner product uTv and the outer product uvT can be
computed using matrix multiplication and the transpose operator:

> disp(u’ * v);
0

> disp(u * v’);
0 1 -2
0 2 -4
0 1 -2

For the inner product, the function dot can be used, which
computes the dot product:

> disp(dot(u, v));
0

Frank Keller Computational Foundations of Cognitive Science 21

Basic Matrix Operations
Special Matrices
Matrix Products

Transpose, Inner and Outer Product

Transpose
Symmetric Matrices
Inner and Outer Product

Summary

Matrix sum and difference: A + B, A - B;

zero and identity matrix: zero(n) and eye(n);

product of two matrices: A * B;

product of the elements of a matrix: A .* B;

product of a matrix and a scalar, of a matrix and a vector:
A * c, A * v;

extracting matrix elements and row and column vectors:
A(i, j), A(i, :), A(:, j);

transpose and trace: A’, trace(A);

inner product and outer product: u’ * v, u * v’.

Frank Keller Computational Foundations of Cognitive Science 22


