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Matrix addition and scalar multiplication obey the laws familiar
from the arithmetic with real numbers.

Theorem: Properties of Addition and Scalar Multiplication

If a and b are scalars, and if the sizes of the matrices A, B, and C
are such that the operations can be performed, then:

@ A+ B = B+ A (cummutative law for addition)

o A+ (B+ C)=(A+ B)+ C (associative law for addition)

@ (ab)A = a(bA)

o (a+b)A=aA+bA

o (a—b)A=aA—bA

e a(A+B)=aA+aB

e a(A—B)=aA—-aB

Matrix Multiplication

However, matrix multiplication is not cummutative, i.e., in general
AB # BA. There are three possible reasons for this:
o AB'is defined, but BA is not (e.g., Ais 2 x 3, B is 3 x 4);
o AB and BA are both defined, but differ in size (e.g., A is
2x3,Bis3x2);
o AB and BA are both defined and of the same size, but they
are different.

-1 0 12

Assume A = [ 5 3 B= 30 then
-1 -2 3 6
e R
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Properties of Matrices

Matrix Multiplication Zero Matrix

While the cummutative law is not valid for matrix multiplication,
many properties of multiplication of real numbers carry over. A matrix whose entries are all zero is called a zero matrix. It is
denoted as 0 or Opxm, if the dimensions matter.

Theorem: Properties of Matrix Multiplication

If a is a scalar, and if the sizes of the matrices A, B, and C are such that
the operations can be performed, then

A(BC) = (AB)C (associative law for multiplication)
A(B + C) = AB + AC (left distributive law)

[0

oo oo

(B + C)A = BA+ CA (right distributive law)
A(B — C) = AB— AC
(B—C)A=BA—CA

a(BC) = (aB)C = B(aC)

The zero matrix 0 plays a role in matrix algebra that is similar to
that of 0 in the algebra of real numbers. But again, not all
properties carry over.

Therefore, we can write A+ B+ C and ABC without parentheses.
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ro and Identity Matrix
Mid-lecture m

Zero Matrix Zero Matrix

Theorem: Properties of 0
If ¢ is a scalar, and if the sizes of the matrices are such that the
operations can be performed, then:

e A+0=0+A=A AssumeA:[ } B:[; ﬂ C:E i]
e A-0=A 3 4

e A-A=A+(-A)=0 It holds that AB = AC = B

e 0A=0 So even though A # 0, we can't conclude that B = C.
o if cAA=0then c=00r A=0

However, the cancellation law of real numbers does not hold for
matrices: if ab = ac and a # 0, then not in general b = c.
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Properties of Matrices Properties of Matrices

Mid-lecture Problem Identity Matrix

A square matrix with ones on the main diagonal and zeros
everywhere else is an identity matrix. It is denoted as [ or I, to

We saw that if cA = 0 then ¢ = 0 or A= 0. Does this extend to
indicate the size

the matrix matrix product? In other words, can we conclude that if
CA=0then C=0o0r A= 07

1

1
0
Assume C = 0
0

0
0 2|
Can you come up with an A # 0 so that CA = 07

The identity matrix / plays a role in matrix algebra similar to that
of 1 in the algebra of real numbers, where a-1=1-a=a.
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Properties of Matrices Properties of Matrices
ntity Matrix

nti ’
lecture Problem

Identity Matrix Example: Representing Images
Multiplying an matrix with / will leave that matrix unchanged. Assume we use matrices to represent greyscale images. If we
Ticaran [y multiply an image with / then it remains unchanged:
If Aiis an n x m matrix, then Al,, = A and [,A = A. s

a1 a 313] 255/ =

a1 axp a3

1 0| [an a2 a an a2 a
bA= 112 a3| _ (A a2 a3 _
a1 ax» ax a1 axp a3

a1 axp a3

o o~

Oe an an a
10 :[11 12 13}:/‘
01

Recall that 0 is black, and 255 is white.
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Definition of the Transpose

Definition of the Trace

IfAi trix, btain AT by interchanging th
If Ais an m x n matrix, then the transpose of A, denoted by AT, 15 Square matrix, we can obtain Y interchanging the .
. . N y . . entries that are symmetrically positions about the main diagonal:
is defined to be the n x m matrix that is obtained by making the
rows of A into columns: (A); = (AT)/-,'. -12 4 -13 5
A=|3 7 0| AT=|2 7 8
5 8 -6 4 0 -6

Definition: Trace

a1 d12 a13 a4 2 3

A= lan an a3 au| B= é 2 C=[1 3 -5 D=p4 If Ais a square matrix, then the trace of A, denoted by tr(A), is
31 932 333 a3 defined to be the sum of the entries on the main diagonal of A.

1

T_ |a2 an ax r_[2 1 5] ~7_ T_ T

S il WS I M DT =4 tr(A) = tr(AT) = 147+ (-6) =0

A4 3 a3

du aan ad3;
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Definition

Transpose and Trace | piEL

Properties of the Transpose

Properties of the Trace

Theorem: Transpose and Dot Product

Au-v=u-ATv

Theorem: Properties of the Transpose

—ATu.
If the sizes of the matrices are such that the stated operations can u-Av=Au-v
be performed, then:
(AT = A Theorem: Properties of the Trace

If A and B are square matrices of the same size, then:
o tr(AT) = tr(A)
o tr(cA) = c tr(A)
o tr(A+ B) = tr(A) + tr(B)
o tr(A— B) = tr(A) — tr(B)
o tr(AB) = tr(BA)
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Transpose and Trace
Inner and Outer Product

Example: Representing Images Inner and Outer Product

Definition: Inner and Outer Product

We can transpose a matrix representing an image:

If u and v are column vectors with the same size, then u”v is the
inner product of u and v; if u and v are column vectors of any size,
then uv” is the outer product of u and v.

Theorem: Properties of Inner and Outer Product
ulv =tr(uv’)

u'lv=u-v=v-u
tr(uvT) = tr(vu’)
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Inner and Outer Product Summary

Matrix addition and scalar multiplication are cummutative,
associative, and distributive;

matrix multiplication is associative and distributive, but not
cummutative: AB # BA;

the zero matrix 0 consists of only zeros, the identity matrix /
consists of ones on the diagonal and zeros everywhere else;

Vi
v2 o transpose AT: (A); = (AT)i;
ulv=1[u w - u | | =[vitwvt - +uv]=u-v P (A% = ( )ﬂ Lo
: o trace tr(A): sum of the entries on the main diagonal;
" Vi mvi uva o v, @ the trace and the transpose are distributive;
uz Vi WpVy e UV : uTy
wi= [ w vl = ] ] ] o inner product: u'v;
: @ outer product: uv’.
U, UpVi UpV2 -+ UpVp
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