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Matrix Notation Matrix Notation
A matrix is a rectangular array of entries. An m x n matrix has m An n x n matrix is called a square matrix. The entries
rows and n columns. a11, @22, ..., apy are the main diagonal of the matrix. (A); denotes

the entries in row i and column j of matrix A.

102
12 -1 1
30{ }[2103][]
O R 3

IfA= [3 ’03] then (A)11 = 3, (A)i2 = —3, (A)o1 = 7, and (A)z = 0.

Capital letters such as A to denote matrices, lowercase letters such

Two matrices are equal if they have the same size and their
as aip denote entries:

corresponding entries are equal.

a1z Al Definition: Equality
a2 a2 - axn ) ) N n
A= . . | abbreviated as [ajj]mxn or just [a;] If A= [aj] and B = [bjj] have the same size, then A = B iff
. : . (A)ij = (B)jj (or equivalently aj; = bj), for all / and j.
aml ama vt Amn
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Sum and Difference
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Product with Scalar

Sum and Difference

For matrices of the same size, A+ B and A — B can be obtained
by adding/subtracting the corresponding entries of A and B. The product of a matrix A and a scalar c is obtained by
multiplying each entry of A with c.

Definition: Sum and Difference
If A= [aj] and B = [bj] have the same size, then
(A+ B)jj = (A)jj + (B);j = aj + bj and

(A= B)ij = (A)ij — (B)i = ajj — bj.

Definition: Product with a Scalar
If A= [aj] and c is a scalar, then (cA); = c(A); = cajj.
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Example: Representing Images Example: Representing Images

We can change the brightness of an image by multiplying its

A greyscale image can be represented as a matrix of integers, each matrix with a scalar:

of which represents a shade of grey from 0 (black) to 255 (white).

106 147 145 ... 153
94 114 112 --- 98
A= |90 107 106 106
117 112 148 --- 129
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Example: Representing Images Example: Representing Images

A matrix which has 1 on its diagonal and 0 everywhere else is We can add and subtract the matrices of two images:
called an identity matrix

100 --- 0

010 0 A+ 255/ = 255/ — A=
/=001 - 0] 255 =

000 1

What happened for 255/ — A?
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Row and Column Vectors Product with Vector

The product of a matrix A and a vector x is the linear combination of the
column vectors of A and the entries of x.

A matrix can be portioned into row vectors or column vectors. We Definition: Product with a Vector

use r;(A) to denote the i-th row vector and c;(A) to denote the

If A'is an m X n matrix with the column vectors aj,ap, ..., ap, and x is
j-th column vector of matrix A. an n x 1 column vector then
X1
[ 1
Ax=|a; ay -+ a, = X131 + X@2 + - + Xpap
dnn d12 d13 di a3 B
If A= |axn ax» ax ax|, then c3(A) = |ax3| and Xn
331 33 a3 A a33

HA)=lan o ap odladER=Im = % el
1 3 273 1 3 2] [4
o @ 3| 2l [G]+2[A-
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Matrix Products Matrix Products

Mid-lecture Problem Product with Vector

Alternative notation for Ax without using column vectors:
Assume you have a system of four linear equations, each of which

has three variables. ottt Il o A e T nd
a  axn o am| X X1a21 + Xpaz2 + + Xnd2n

How can you represent this system using a matrix A and a : - :

vector x? What are the dimensions of A and x? What does the ami Ame o amn| |Xo X1am1 + Xoam2 + ++ + XpAmn

product Ax correspond to?

Example: Theorem: Linearity Properties
4a+2b—c = 3 If A'is an m x n matrix, then the following holds for all column
2a+b—3c = 0 vectors u and v in R" and every scalar c:
a-5 = 4 Q A(cu) = c(Au)
—b+6c = -3 Q A(u+v) = Au+ Av

Matrix Products Matrix Products

Matrix Product

Example: Representing Images

Definition: Matrix Product
If Ais an m x s matrix and B is an s x n matrix and if the column Let's assume a variant of the identity matrix with two diagonals
vectors of B are by, by, ..., by, then the product AB is the m x n containing ones, as in:

matrix AB = [Ab; Aby - Aby).

Note that the number of columns of A has to be the same as the
number or row of B, otherwise the product is undefined.

4 1 4 3

ol ail-pney
2 7 5 2

Note that BA is undefined, as B'is 3 x 4 and Ais 2 x 3.

2558 =

Scococorococood
cooroococooo
corooocoocoo
ocroocoococococoo
~roooooocooo

coococococococowr
coococoocococoro
cooocococoroo
coocococorooo
cococoocoorooog
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G mn Vect
Product with Vector
Matrix Products Mid-lecture Problem

Matrix Product

Example: Representing Images

Examples for matrix multiplication: Examples for matrix multiplication:

ABB
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Summary

Row-Column Rule

Sometimes we want to compute a specific entry in a matrix
product, without computing the entire column.

Matrix addition: (A + B); = (A); + (B)j = aj + by;
matrix subtraction: (A — B);; = (A)j — (B)jj = aj — by;
product with scalar: (cA); = c(A); = cay;

The entry in row i and column j of AB is the i-th row vector of A
times the j-th column vector of B:

Theorem: Row-Column Rule or Dot Product Rule
(AB)jj = ri(A)cj(B) = ri(A) - ¢j(B) = ajbyj + ajpboj + -+ + ajshg

i-th row vector of A: ri(A); j-th column vector: ¢;(A);

product with vector: Ax = xja1 + xpaz + + - - + X,ap;
matrix product: AB = [Abl Aby - Ab,,};
row-column rule: (AB);; = ri(A)cj(B).

In the same way, the j-th column of AB is A times the j-th column
of B. The i-th row of AB is the i-th row of A times B.

Theorem: Column Rule and Row Rule

¢j(AB) = Ac(B)  ri(AB) =ri(A)B
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