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The Visual Processing Pipeline

The rest of the course will deal with human visual cognition. We

will focus on high-level visual processing (not visual neuroscience):

e Visual attention: How do we decide which parts of an image
to focus on?

o Visual search: How do we search for a target in an image?
o Object recognition: How do we identify objects in an image?

We will introduce computational models in all three domains.
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The Visual Processing Pipeline

When we view an image, we actually see this:

The area of
foveal vision

Only the fovea, a small area in the center of the retina, is in focus.

Image from http://eyetracking.me/
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The Visual Processing Pipeline

In order to take in the whole image, we have to move our eyes:
fixations (stationary periods) and saccades (rapid movements).
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How do we determine where to look? We need to work out which
area are interesting, i.e., attract visual attention.
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Visual Saliency

We attend to the areas that are visually salient. An area is salient
if it stands out, is different from the rest of the image.
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The visual system computes a saliency map of the image, and then
moves the eyes to the most salient regions in turn (ltti et al.,
1998).
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Visual Features

Saliency can be tested using visual search experiments: participants
have to find a target item among a number of distractors.
Examples for visual features that can make a target salient:

@ color;

@ orientation;

@ intensity.
Saliency can make the target pop out from its distractors if it

differs in one of this features.

The pop-out effect doesn't occur if the target is different from the
distractors in two aspects (conjunction target).
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Visual Features

Pop-out because of color (Itti, 2007):
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Visual Features

Pop-out because of orientation (Itti, 2007):
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Visual Features

No pop-out: conjunction target (Itti, 2007):
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Model Architecture

Itti et al.’s (1998) computational model of saliency:

@ compute feature maps for color, intensity, orientation at
different scales;

@ compute center-surround difference and apply a normalization;
@ combine the maps across scales into conspicuity maps;

@ saliency map is a linear combination of the conspicuity maps;
@ winner-takes-all operator predicts attended locations.

This model mainly works for free viewing. In the next lectures we
will talk about models that can account for search data.
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Model Architecture
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Feature Maps

Feature maps are computed at nine spatial scales (1:1 to 1:256) by
low-pass filtering (blurring) and subsampling the image.

A center-surround operator is used to detect locations that stand
out from their surroundings:

@ this is implemented as the difference between finer and
coarser scales;

@ the center is a pixel at scale ¢ € {2,3,4};

@ the surround is the corresponding pixel at scale s = c + d,
with d € {3,4};

o the across-scale difference between two maps is denoted as &.
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Intensity

At each spatial scale, a set of feature maps are computed based on
the red, green, and blue color values (r, g, b) of the pixels.

Intensity map: compute the intensity function | = (r + g + b)/3
and then the intensity map using the center surround operator:

I(c;s) = [I(c) © I(s)]

with ¢ € {2,3,4} and s = ¢ + d, with d € {3,4}.
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Color

Color maps: compute four color values R = r — (g + b)/2 for red,
G =g —(r+b)/2 for green, B= b — (r + g)/2 for blue, and
Y =(r+g)/2—|r—gl|/2— b for yellow.

Then compute color maps again using center-surround:
RG(c,s) = |(R(c) = G(c)) & (G(s) — R(s))]
BY(c,s) = [(B(c) = Y(c)) & (Y(s) — B(s))l

These are based on color opponencies (exist in the visual cortex).
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Orientation

Orientation map: compute Gabor pyramids O(o, §) where
o €[0...8] is the scale and 6 € {0°,45°,90°,135°} is the
preferred orientation.

Then compute color maps again using center-surround:
O(c,s,9) = |0(c,0) © O(s, )|

In total, 42 feature maps are computed: six for intensity, 12 for
color, and 24 for orientation.

16/28



Example
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Saliency Map

Before we combine feature maps, a normalization operator N(-) is

applied, which promotes maps with a small number of strong
peaks, and suppressed maps with many similar peaks.

Stimulus

Arbitrary units

Arbitrary units

Intensity map
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Saliency Map

The feature maps are combined into three conspicuity maps for
intensity, color, and orientation at the same scale (o = 4).

For intensity and color, we get:
.’z_ = @3—;2 ®§i§+3 N(I(C> S))

C =i 12,3 IW(RY(c, ) + N(BY(c, ))]

where the @ operator reduces each map to scale 4 and performs
point-by-point addition.
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Saliency Map

For orientation, we first combine the six feature maps for a given
angle and then add them to get a single conspicuity map:

O= 3 N@l,edt N0 s.0))

#c{0°,45°,90°,135°}

The overall saliency map is then computed by normalizing and
averaging the three conspicuity maps:

1 _ _ _
S = 5(/\/'(2) +N(C) + N(O))
Why do we normalize each conspicuity map separately? Similar
features compete strongly for saliency, while different ones

contribute independently to saliency.
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Example
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Inhibition of Return

Now we can predict sequences of fixations from a saliency map:

@ the maximum of § is the most salient location, which
becomes the focus of attention (FOA);

e all other locations are ignored (inhibited);

@ then the saliency around the FOA is reset, so that the second
most salient location becomes the new FOA.

The last property is crucial: it results in inhibition of return, so that
the FOA doesn’'t immediate return to the most salient location.

Itti et al. (1998) implement this using a winner-take-all neural
network. This allows them to simulate fixation durations.
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Inhibition of Return

S
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Inhibition of Return
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Inhibition of Return
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Inhibition of Return
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Robustness to Noise

Test the model by adding noise to the image, see if it is still able
to pick out salient locations correctly.

White-color noise

0.1 (5x5 patches)

d
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Robustness to Noise

Test the model by adding noise to the image, see if it is still able
to pick out salient locations correctly.

0.5 (5x5 patches)

d
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Robustness to Noise

Test the model by adding noise to the image, see if it is still able
to pick out salient locations correctly.
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Evaluation

Evaluation reported by Itti et al. (1998):

@ saliency model can reproduce human performance in pop-out
tasks (including conjunction target);

o tested also on images of traffic signs, red soda cans, and
emergency triangles (though no details given in the paper);

@ outperforms spatial frequency models.

No evaluation of saliency against eye-tracking data. However, there
is a lot of subsequent work on this topic, such as Borji, Sihite, and
Itti (2013).
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Strengths and Limitations

Strengths:

simple feed-forward architectures generates complex behavior;
massively parallel implementation (biologically plausible);

very successful as model of early visual processing.

Weaknesses:

can only detect regions that are salient based on either color,
intensity, or orientation;

other features (e.g., T junctions, line termination) or
conjunctions of features are not accounted for in the model;

motion is important for saliency, but is not modeled,;

the normalization function A/(-) plays a crucial role without
being theoretically well-founded;

no notion of object in the model (saliency is a property of a
point); but objectness crucial for human scene perception.
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Summary

@ Attention selects the part of the visual input which is fixated
and processed in detail;

@ attention is directed to visually salient areas in an image, i.e.,
areas that are different from the rest of the image;

@ the saliency model is based on color, orientation, intensity
maps computed at various spatial scales;

@ center-surround differences are applied, and the maps
normalized and combined into a single saliency map;

@ a winner-takes-all mechanism then predicts attended locations;

@ model is robust to noise and models human fixation behavior.
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