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The Visual Processing Pipeline

The rest of the course will deal with human visual cognition. We
will focus on high-level visual processing (not visual neuroscience):

Visual attention: How do we decide which parts of an image
to focus on?

Visual search: How do we search for a target in an image?

Object recognition: How do we identify objects in an image?

We will introduce computational models in all three domains.
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The Visual Processing Pipeline

When we view an image, we actually see this:
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Only the fovea, a small area in the center of the retina, is in focus.
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The Visual Processing Pipeline

In order to take in the whole image, we have to move our eyes:
fixations (stationary periods) and saccades (rapid movements).
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How do we determine where to look? We need to work out which
area are interesting, i.e., attract visual attention.
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Visual Saliency

We attend to the areas that are visually salient. An area is salient
if it stands out, is different from the rest of the image.

−→

The visual system computes a saliency map of the image, and then
moves the eyes to the most salient regions in turn (Itti et al.,
1998).
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Visual Features

Saliency can be tested using visual search experiments: participants
have to find a target item among a number of distractors.

Examples for visual features that can make a target salient:

color;

orientation;

intensity.

Saliency can make the target pop out from its distractors if it
differs in one of this features.

The pop-out effect doesn’t occur if the target is different from the
distractors in two aspects (conjunction target).
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Visual Features

Pop-out because of color (Itti, 2007):
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Visual Features

Pop-out because of orientation (Itti, 2007):
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Visual Features

No pop-out: conjunction target (Itti, 2007):
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Model Architecture

Itti et al.’s (1998) computational model of saliency:

compute feature maps for color, intensity, orientation at
different scales;

compute center-surround difference and apply a normalization;

combine the maps across scales into conspicuity maps;

saliency map is a linear combination of the conspicuity maps;

winner-takes-all operator predicts attended locations.

This model mainly works for free viewing. In the next lectures we
will talk about models that can account for search data.
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Model Architecture

A Model of Saliency-Based Visual Attention

—A visual attention system, inspired by the behavior and the
neuronal architecture of the early primate visual system, is presented.

locations in order of decreasing saliency. The system breaks down the

computationally efficient manner, conspicuous locations to be analyzed

real time, despite the limited speed of the neuronal hardware avail-
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Feature Maps

Feature maps are computed at nine spatial scales (1:1 to 1:256) by
low-pass filtering (blurring) and subsampling the image.

A center-surround operator is used to detect locations that stand
out from their surroundings:

this is implemented as the difference between finer and
coarser scales;

the center is a pixel at scale c ∈ {2, 3, 4};
the surround is the corresponding pixel at scale s = c + d ,
with d ∈ {3, 4};
the across-scale difference between two maps is denoted as 	.
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Intensity

At each spatial scale, a set of feature maps are computed based on
the red, green, and blue color values (r , g , b) of the pixels.

Intensity map: compute the intensity function I = (r + g + b)/3
and then the intensity map using the center surround operator:

I(c , s) = |I (c)	 I (s)|

with c ∈ {2, 3, 4} and s = c + d , with d ∈ {3, 4}.
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Color

Color maps: compute four color values R = r − (g + b)/2 for red,
G = g − (r + b)/2 for green, B = b − (r + g)/2 for blue, and
Y = (r + g)/2− |r − g |/2− b for yellow.

Then compute color maps again using center-surround:

RG(c , s) = |(R(c)− G (c))	 (G (s)− R(s))|

BY(c , s) = |(B(c)− Y (c))	 (Y (s)− B(s))|

These are based on color opponencies (exist in the visual cortex).
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Orientation

Orientation map: compute Gabor pyramids O(σ, θ) where
σ ∈ [0 . . . 8] is the scale and θ ∈ {0◦, 45◦, 90◦, 135◦} is the
preferred orientation.

Then compute color maps again using center-surround:

O(c , s, θ) = |O(c , θ)	 O(s, θ)|

In total, 42 feature maps are computed: six for intensity, 12 for
color, and 24 for orientation.
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Example

C̄ Ī Ō
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Saliency Map

Before we combine feature maps, a normalization operator N (·) is
applied, which promotes maps with a small number of strong
peaks, and suppressed maps with many similar peaks.
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Saliency Map

The feature maps are combined into three conspicuity maps for
intensity, color, and orientation at the same scale (σ = 4).

For intensity and color, we get:

Ī = ⊕4
c=2 ⊕c+4

s=c+3 N (I(c , s))

C̄ = ⊕4
c=2 ⊕c+4

s=c+3 [N (RG(c , s)) +N (BY(c , s))]

where the ⊕ operator reduces each map to scale 4 and performs
point-by-point addition.
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Saliency Map

For orientation, we first combine the six feature maps for a given
angle and then add them to get a single conspicuity map:

Ō =
∑

θ∈{0◦,45◦,90◦,135◦}

N (⊕4
c=2 ⊕c+4

s=c+3 N (O(c, s, θ)))

The overall saliency map is then computed by normalizing and
averaging the three conspicuity maps:

S =
1

3
(N (Ī) +N (C̄) +N (Ō))

Why do we normalize each conspicuity map separately? Similar
features compete strongly for saliency, while different ones
contribute independently to saliency.
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Example
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Inhibition of Return

Now we can predict sequences of fixations from a saliency map:

the maximum of S is the most salient location, which
becomes the focus of attention (FOA);

all other locations are ignored (inhibited);

then the saliency around the FOA is reset, so that the second
most salient location becomes the new FOA.

The last property is crucial: it results in inhibition of return, so that
the FOA doesn’t immediate return to the most salient location.

Itti et al. (1998) implement this using a winner-take-all neural
network. This allows them to simulate fixation durations.

22 / 28



Inhibition of Return
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Inhibition of Return
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Inhibition of Return
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Inhibition of Return
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Robustness to Noise

Test the model by adding noise to the image, see if it is still able
to pick out salient locations correctly.
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Evaluation

Evaluation reported by Itti et al. (1998):

saliency model can reproduce human performance in pop-out
tasks (including conjunction target);

tested also on images of traffic signs, red soda cans, and
emergency triangles (though no details given in the paper);

outperforms spatial frequency models.

No evaluation of saliency against eye-tracking data. However, there
is a lot of subsequent work on this topic, such as Borji, Sihite, and
Itti (2013).
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Strengths and Limitations

Strengths:

simple feed-forward architectures generates complex behavior;

massively parallel implementation (biologically plausible);

very successful as model of early visual processing.

Weaknesses:

can only detect regions that are salient based on either color,
intensity, or orientation;

other features (e.g., T junctions, line termination) or
conjunctions of features are not accounted for in the model;

motion is important for saliency, but is not modeled;

the normalization function N (·) plays a crucial role without
being theoretically well-founded;

no notion of object in the model (saliency is a property of a
point); but objectness crucial for human scene perception.
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Summary

Attention selects the part of the visual input which is fixated
and processed in detail;

attention is directed to visually salient areas in an image, i.e.,
areas that are different from the rest of the image;

the saliency model is based on color, orientation, intensity
maps computed at various spatial scales;

center-surround differences are applied, and the maps
normalized and combined into a single saliency map;

a winner-takes-all mechanism then predicts attended locations;

model is robust to noise and models human fixation behavior.
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