Computational Cognitive Science Lecture 13: Sentence Processing

Chris Lucas (Slides adapted from Frank Keller's)

School of Informatics University of Edinburgh clucas2@inf.ed.ac.uk

7 November, 2017

イロト 不得下 イヨト イヨト 二日

1/29

Background

- Grammars and Processing
- Ambiguity and Garden Paths

2 Modeling Human Parsing

- Probabilistic Parallel Parser
- Probabilistic Context-free Grammars
- Results

Reading: Jurafsky (1996) (you can skip Section 3).

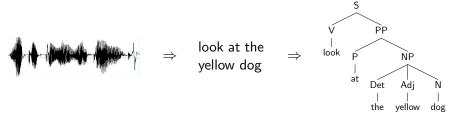
Introduction

In a previous lecture dealt with *lexical processing*, which turns a sound wave into a sequence of words.

look at the yellow dog

Introduction

In a previous lecture dealt with *lexical processing*, which turns a sound wave into a sequence of words.



In this lecture, we will look at *sentence processing* (parsing), which turns a sequence of words into a syntactic representation.

Syntactic representations make explicit how the words in a sentence relate to each other.

Context-free Grammar

In order to build syntactic representations, we need a grammar. A simple type of grammar is a *context-free grammar*:

Phrasal categories:

S: sentence, NP: noun phrase, VP: verb phrase

Lexical categories (parts of speech): Det: determiner, N: noun, V: verb

Context-free rules:

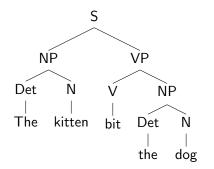
S	\rightarrow	NP VP	Det	\rightarrow	the
NP	\rightarrow	Det N	Ν	\rightarrow	kitten
VP	\rightarrow	V NP	Ν	\rightarrow	dog
			V	\rightarrow	bit

A *derivation* is the sequence of strings that results from applying a sequence of grammar rules, starting from a start symbol, here S:

 $\begin{array}{l} \mbox{Derivation} \\ S \Rightarrow NP \ VP \Rightarrow NP \ V \ NP \Rightarrow NP \ V \ Det \ N \Rightarrow NP \ bit \ Det \ N \Rightarrow NP \\ \mbox{bit Det dog} \Rightarrow NP \ bit \ the \ dog \Rightarrow Det \ N \ bit \ the \ dog \Rightarrow the \ N \ bit \\ the \ dog \Rightarrow the \ kitten \ bit \ the \ dog \end{array}$

Derivations and Syntax Trees

Derivations are represented as syntax trees:



A sentence can have multiple syntax trees, which typically correspond to different interpretations: *syntactic ambiguity*.

Global Ambiguity

Examples of ambiguous sentences:

- (1) a. She sat on the chair covered in dust.
 - b. I put the book on the table in the kitchen.
 - c. Kids make nutritious snacks.
 - d. Milk drinkers are turning to powder.
 - e. Old school pillars are replaced by alumni.

These are cases of *global ambiguity:* the sentence has multiple syntax trees, independently of how the trees are computed.

Examples from http://www.fun-with-words.com/ambiguous_garden_path.html

Human Sentence Processing

A *parser* is an algorithm that computes the syntax trees of a sentence, given a grammar.

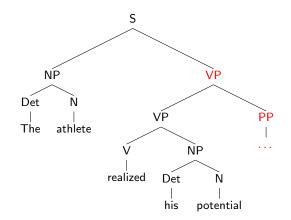
The human parser is *incremental:* it builds trees word by word as the input arrives.

Incrementality can cause an additional form of ambiguity. Example:

- (2) The athlete realized his potential ...
 - a. ... at the competition.
 - b. ... could make him a world-class sprinter.

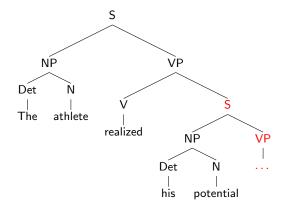
This is *local ambiguity:* the input up to the current word is compatible with more than one syntax tree; the ambiguity is resolved once the rest of the input is processed.

Local Ambiguity: Tree 1 (VP \rightarrow V NP)



(3) The athlete realized his potential *at the competition*.

Local Ambiguity: Tree 2 (VP \rightarrow V S)



(4) The athlete realized his potential *could make him a world-class sprinter.*

Garden Paths

This is an example of a *garden path*:

- both trees are compatible with the input up until *potential*; only the next word disambiguates;
- however, the processor commits to a single (wrong) tree early on, and trips up when later input is inconsistent with that tree;
- presumably, the processor now has to compute a new tree that is consistent with the input;
- garden path sentences result in longer reading times, reverse eye-movements, lower comprehension accuracies, etc.

Garden Paths

Examples of garden paths triggered by local ambiguity:

- (5) a. The complex houses married and single students.
 - b. The horse raced past the barn fell.

But: the following examples are not garden paths, even though they have the same syntactic structure:

(6) a. The warehouse fires a dozen employees each year.b. The bird found in the room died.

Our model needs to be able to explain this.

Probabilistic Parallel Parser

Jurafsky (1996) proposes an *incremental, parallel parsing model*:

- all (partial) parses compatible with the current input are constructed in parallel;
- each parse is assigned a probability;
- parses are pruned from the search space if their probability is a factor of α below the most probable parse: *beam search*;
- garden paths occur when the tree that is ultimately correct has been pruned.

How are parse probabilities determined?

Computing Parse Probabilities

Jurafsky, 1996 focuses on two sources of information:

- construction probability: the probability of a syntactic tree;
- *valence probability:* the probability of particular syntactic categories as arguments for a specific verbs.

Assume that construction probability and valence probability are independent:

$$P(tree) = P(construction) \cdot P(valence)$$

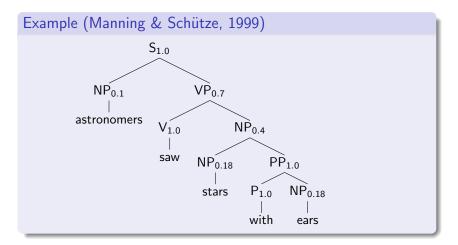
We can use a *probabilistic context-free grammar* to compute P(construction).

Probabilistic Context-free Grammars

Example (Manning & Schütze, 1999)						
$S\toNP\;VP$	1.0	$NP\toNP\;PP$	0.4			
$PP \to P \; NP$	1.0	$NP \to astronomers$	0.1			
$VP \to V \; NP$	0.7	$NP \to ears$	0.18			
$VP\toVP\;PP$	0.3	$NP \to saw$	0.04			
$P \to with$	1.0	$NP \to stars$	0.18			
$V \to saw$	1.0	$NP \to telescopes$	0.1			

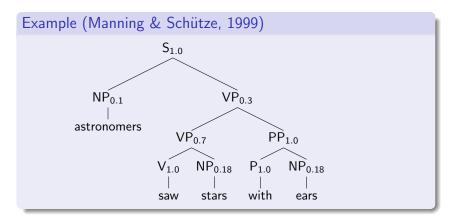
- P(A→ B C) is defined as P(B C|A), the probability of deriving the right-hand side B C given the left-hand side is A;
- the probabilities of all rules with the same LHS sum to one;
- $P(construction) = \prod_i P(rule_i)$ for all rules applied in tree.

Probabilistic Context-free Grammar



 $P(t_1) = 1.0 \cdot 0.1 \cdot 0.7 \cdot 1.0 \cdot 0.4 \cdot 0.18 \cdot 1.0 \cdot 1.0 \cdot 0.18 = 0.0009072$

Probabilistic Context-free Grammar



 $P(t_2) = 1.0 \cdot 0.1 \cdot 0.3 \cdot 0.7 \cdot 1.0 \cdot 0.18 \cdot 1.0 \cdot 1.0 \cdot 0.18 = 0.0006804$ Hence t_1 more probable than t_2 according to our PCFG.

Estimating PCFG Probabilities

The probabilities of a PCFG can be estimated from a *treebank*, a corpus annotated with syntactic trees.

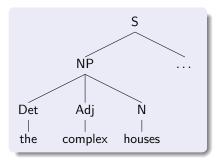
We can use the *relative frequency* with which a rule $A \rightarrow B C$ occurs in a corpus to estimate its probability:

$$P(A
ightarrow B C) = rac{c(A
ightarrow B C)}{\sum_{\xi} c(A
ightarrow \xi)}$$

Where $c(A \rightarrow \xi)$ counts how often $A \rightarrow \xi$ occurs in the corpus.

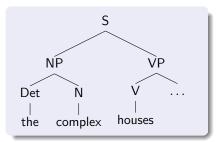
Now we can use this approach to explain the examples of *local ambiguity* that we saw earlier.

Modeling Garden Path Effects



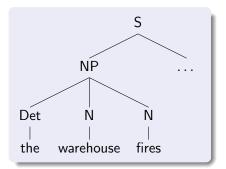
 $P(t_1) = 8.5 \cdot 10^{-8}$ (preferred)

Modeling Garden Path Effects



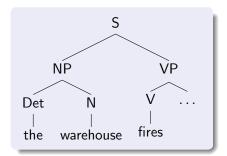
 $P(t_2) = 3.2 \cdot 10^{-10}$ (grossly dispreferred)

Modeling Ambiguity



 $P(t_1) = 4.2 \cdot 10^{-5}$ (preferred)

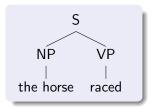
Modeling Ambiguity



 $P(t_2) = 1.1 \cdot 10^{-5}$ (mildly dispreferred)

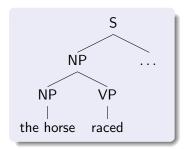
Garden path caused by construction probabilities and valence probabilities:

 $P(\mathsf{race}, \langle \mathsf{agent} \rangle) = 0.92$



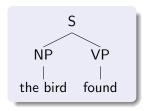
 $P(t_1) = 0.92$ (preferred)

Garden path caused by construction probabilities and valence probabilities: $P(\text{race}, \langle \text{agent}, \text{ theme} \rangle) = 0.08$ NP \rightarrow NP XP = 0.14



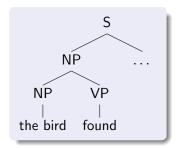
 $P(t_2) = 0.0112$ (grossly dispreferred)

Disambiguation using construction probabilities and valence probabilities, no garden path: $P(\text{find}, \langle \text{agent} \rangle) = 0.38$



 $P(t_1) = 0.38$ (preferred)

Disambiguation using construction probabilities and valence probabilities, no garden path: $P(\text{find}, \langle \text{agent}, \text{ theme} \rangle) = 0.62$ NP \rightarrow NP XP 0.14



 $P(t_2) = 0.0868$ (mildly dispreferred)

Setting the Beam Width

Crucial assumption: if the relative probability of a tree falls below a certain value, then it will be pruned.

sentence	probability ratio
the complex houses	267:1
the horse raced	82:1
the warehouse fires	3.8:1
the bird found	3.7:1

Assumption: a garden path occurs if the probability ratio is greater than threshold α (here: $\alpha \approx 5$).

Summary

- Sentences processing (parsing) is the task of assigning a syntax tree to a string of words;
- human sentence processing is incremental (word by word); this can lead to local ambiguity;
- garden paths derive from local ambiguities that are hard to resolve; they lead to longer processing times;
- Jurafsky, 1996 proposes an incremental, probabilistic parser as a model of human sentence processing;
- key modeling assumptions:
 - combination of PCFG probabilities and valence probabilities;
 - pruning of improbable trees (beam search);
 - garden paths happen when correct tree has been pruned.

References

Jurafsky, D. (1996). A probabilistic model of lexical and syntactic access and disambiguation. *Cognitive Science*, 20(2), 137–194. Manning, C. D. & Schütze, H. (1999). *Foundations of statistical*

Manning, C. D. & Schütze, H. (1999). Foundations of statistical natural language processing. Cambridge, MA: MIT Press.