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Reading: Jurafsky (1996) (you can skip Section 3).
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Introduction

In a previous lecture dealt with lexical processing, which turns a
sound wave into a sequence of words.
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Introduction

In a previous lecture dealt with lexical processing, which turns a
sound wave into a sequence of words.
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In this lecture, we will look at sentence processing (parsing), which
turns a sequence of words into a syntactic representation.

Syntactic representations make explicit how the words in a
sentence relate to each other.
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Context-free Grammar

In order to build syntactic representations, we need a grammar. A
simple type of grammar is a context-free grammar:

Phrasal categories:
S: sentence, NP: noun phrase, VP: verb phrase

Lexical categories (parts of speech):
Det: determiner, N: noun, V: verb

Context-free rules:

S — NPVP Det — the
NP — DetN N — kitten
VP — VNP N — dog

V — bit
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Derivations and Syntax Trees

A derivation is the sequence of strings that results from applying a
sequence of grammar rules, starting from a start symbol, here S:

Derivation

S = NP VP = NP V NP = NP V Det N = NP bit Det N = NP
bit Det dog = NP bit the dog = Det N bit the dog = the N bit
the dog = the kitten bit the dog
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Derivations and Syntax Trees

Derivations are represented as syntax trees:

S
NP VP
/\ /\
Det N \V/ NP

\ | \ P
The kitten pit Det N

| |
the dog

A sentence can have multiple syntax trees, which typically
correspond to different interpretations: syntactic ambiguity.
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Global Ambiguity

Examples of ambiguous sentences:

(1) She sat on the chair covered in dust.

| put the book on the table in the kitchen.
Kids make nutritious snacks.

Milk drinkers are turning to powder.

Old school pillars are replaced by alumni.

®an oo

These are cases of global ambiguity: the sentence has multiple
syntax trees, independently of how the trees are computed.

Examples from http://www.fun-with-words.com/ambiguous_garden_path.html
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Human Sentence Processing

A parser is an algorithm that computes the syntax trees of a
sentence, given a grammar.

The human parser is incremental: it builds trees word by word as
the input arrives.

Incrementality can cause an additional form of ambiguity. Example:

(2)  The athlete realized his potential ...

a. ... at the competition.
b. ... could make him a world-class sprinter.

This is local ambiguity: the input up to the current word is
compatible with more than one syntax tree; the ambiguity is
resolved once the rest of the input is processed.



Local Ambiguity: Tree 1 (VP — V NP)

(3)

NP VP

P /\
Det N

\ \ PP

The athlete /\
/\

realized Det

his  potential

The athlete realized his potential at the competition.
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Local Ambiguity: Tree 2 (VP — V' S)

S
NP VP
/\
Det N
\% S

The athlete ‘ /\
realized b vp
N

N
/\ |
Det
\ |

his  potential

(4)  The athlete realized his potential could make him a
world-class sprinter.
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Garden Paths

This is an example of a garden path:
@ both trees are compatible with the input up until potential;
only the next word disambiguates;

@ however, the processor commits to a single (wrong) tree early
on, and trips up when later input is inconsistent with that tree;

@ presumably, the processor now has to compute a new tree
that is consistent with the input;

@ garden path sentences result in longer reading times, reverse
eye-movements, lower comprehension accuracies, etc.
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Garden Paths

Examples of garden paths triggered by local ambiguity:

(5) a. The complex houses married and single students.
b. The horse raced past the barn fell.

But: the following examples are not garden paths, even though
they have the same syntactic structure:

(6) a. The warehouse fires a dozen employees each year.
b.  The bird found in the room died.

Our model needs to be able to explain this.
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Probabilistic Parallel Parser

Jurafsky (1996) proposes an incremental, parallel parsing model:
o all (partial) parses compatible with the current input are
constructed in parallel;
@ each parse is assigned a probability;

@ parses are pruned from the search space if their probability is
a factor of o below the most probable parse: beam search;

@ garden paths occur when the tree that is ultimately correct
has been pruned.

How are parse probabilities determined?
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Computing Parse Probabilities

Jurafsky, 1996 focuses on two sources of information:

@ construction probability: the probability of a syntactic tree;

@ valence probability: the probability of particular syntactic
categories as arguments for a specific verbs.

Assume that construction probability and valence probability are
independent:

P(tree) = P(construction) - P(valence)

We can use a probabilistic context-free grammar to compute
P(construction).

14 /29



Probabilistic Context-free Grammars

Example (Manning & Schiitze, 1999)

S — NP VP 1.0
PP — P NP 1.0
VP — V NP 0.7
VP — VP PP 03
P — with 1.0
V — saw 1.0

NP — NP PP

NP — astronomers
NP — ears

NP — saw

NP — stars

NP — telescopes

0.4
0.1
0.18
0.04
0.18
0.1

e P(A— BC) is defined as P(B C|A), the probability of
deriving the right-hand side B C given the left-hand side is A;

@ the probabilities of all rules with the same LHS sum to one;

e P(construction) = []; P(rule;) for all rules applied in tree.
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Probabilistic Context-free Grammar

Example (Manning & Schiitze, 1999)

St1.0
NPy VPo7
astronlomers Vio NP 4
salw NP 15 PP1.0

I N

stars  Pio NPgis

with ears

P(t;)=1.0-0.1-0.7-1.0-0.4-0.18-1.0-1.0- 0.18 = 0.0009072
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Probabilistic Context-free Grammar

Example (Manning & Schiitze, 1999)
Sl.O

NPo.1 VPg 3

astronomers /\

VPg 7 PP1g

/\ /\
Vio NPois Pio NPois

saw stars with ears

P(t;) =1.0-0.1-0.3-0.7-1.0-0.18-1.0- 1.0 - 0.18 = 0.0006804
Hence t; more probable than t, according to our PCFG.
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Estimating PCFG Probabilities

The probabilities of a PCFG can be estimated from a treebank, a
corpus annotated with syntactic trees.

We can use the relative frequency with which a rule A — B C
occurs in a corpus to estimate its probability:

P(A— BC) = g:‘c(_;\ i cg)

Where c(A — &) counts how often A — & occurs in the corpus.

Now we can use this approach to explain the examples of /ocal
ambiguity that we saw earlier.
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Modeling Garden Path Effects

Garden path caused by construction probabilities:
S— NP... 0.92 N — houses 0.00055

NP — Det AdjN 0.28 Adj — complex 0.00086
Det — the 0.71

S
NP e
Det Adj N
\ \ \
the complex houses

P(t1) = 8.5 1078 (preferred)
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Modeling Garden Path Effects

Garden path caused by construction probabilities:

NP — Det N 0.63 V — houses 0.000052
S — [NP VP[V ... 0.48 Det — the 0.71
N — complex 0.000029
S
NP VP
/\ /\
Det N \Y
the complex houses

P(t,) = 3.2 - 10710 (grossly dispreferred)
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Modeling Ambiguity

Ambiguous construction, no garden path:
S—NP... 0.92 N — fires 0.00017
NP — Det N N 0.28

S
NP ...
Det N N
\ \ \
the warehouse fires

P(t;) = 4.2-107° (preferred)
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Modeling Ambiguity

Ambiguous construction, no garden path:

NP — Det N 0.63 V — fires 0.000036
S — [NP Vp[V... 0.48
S
NP VP
N
Det N V

the warehouse fires

P(t;) = 1.1-107° (mildly dispreferred)
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Combining Valence and Construction Probabilities

Garden path caused by construction probabilities and valence
probabilities:
P(race, (agent)) = 0.92

S
RN

NP VP
| |

the horse raced

P(t1) = 0.92 (preferred)
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Combining Valence and Construction Probabilities

Garden path caused by construction probabilities and valence
probabilities:

P(race, (agent, theme)) = 0.08

NP — NP XP 0.14

RN

NP

N

NP VP
|

the horse raced

P(t2) = 0.0112 (grossly dispreferred)
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Combining Valence and Construction Probabilities

Disambiguation using construction probabilities and valence
probabilities, no garden path:
P(find, (agent)) = 0.38

S

/\
NP VP

| |
the bird found

P(t1) = 0.38 (preferred)
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Combining Valence and Construction Probabilities

Disambiguation using construction probabilities and valence
probabilities, no garden path:

P(find, (agent, theme)) = 0.62

NP — NP XP 0.14

S
NP
NP VP
the |bird foulnd )

P(t;) = 0.0868 (mildly dispreferred)
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Setting the Beam Width

Crucial assumption: if the relative probability of a tree falls below a
certain value, then it will be pruned.

sentence probability ratio
the complex houses ... 267:1
the horse raced ... 82:1
the warehouse fires . .. 3.8:1
the bird found ... 3.7:1

Assumption: a garden path occurs if the probability ratio is greater
than threshold « (here: a = 5).
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Summary

@ Sentences processing (parsing) is the task of assigning a
syntax tree to a string of words;

@ human sentence processing is incremental (word by word);
this can lead to local ambiguity;

@ garden paths derive from local ambiguities that are hard to
resolve; they lead to longer processing times;

@ Jurafsky, 1996 proposes an incremental, probabilistic parser as
a model of human sentence processing;

@ key modeling assumptions:

e combination of PCFG probabilities and valence probabilities;
e pruning of improbable trees (beam search);
e garden paths happen when correct tree has been pruned.
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