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Reading: Jurafsky (1996) (you can skip Section 3).
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Introduction

In a previous lecture dealt with lexical processing, which turns a
sound wave into a sequence of words.

⇒ look at the
yellow dog

⇒

S

V

look

PP

P

at

NP

Det

the

Adj

yellow

N

dog

In this lecture, we will look at sentence processing (parsing), which
turns a sequence of words into a syntactic representation.

Syntactic representations make explicit how the words in a
sentence relate to each other.
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Context-free Grammar

In order to build syntactic representations, we need a grammar. A
simple type of grammar is a context-free grammar:

Phrasal categories:
S: sentence, NP: noun phrase, VP: verb phrase

Lexical categories (parts of speech):
Det: determiner, N: noun, V: verb

Context-free rules:
S → NP VP

NP → Det N
VP → V NP

Det → the
N → kitten
N → dog
V → bit
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Derivations and Syntax Trees

A derivation is the sequence of strings that results from applying a
sequence of grammar rules, starting from a start symbol, here S:

Derivation

S ⇒ NP VP ⇒ NP V NP ⇒ NP V Det N ⇒ NP bit Det N ⇒ NP
bit Det dog ⇒ NP bit the dog ⇒ Det N bit the dog ⇒ the N bit
the dog ⇒ the kitten bit the dog
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Derivations and Syntax Trees

Derivations are represented as syntax trees:

S

NP

Det

The

N

kitten

VP

V

bit

NP

Det

the

N

dog

A sentence can have multiple syntax trees, which typically
correspond to different interpretations: syntactic ambiguity.
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Global Ambiguity

Examples of ambiguous sentences:

(1) a. She sat on the chair covered in dust.
b. I put the book on the table in the kitchen.
c. Kids make nutritious snacks.
d. Milk drinkers are turning to powder.
e. Old school pillars are replaced by alumni.

These are cases of global ambiguity: the sentence has multiple
syntax trees, independently of how the trees are computed.

Examples from http://www.fun-with-words.com/ambiguous garden path.html
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Human Sentence Processing

A parser is an algorithm that computes the syntax trees of a
sentence, given a grammar.

The human parser is incremental: it builds trees word by word as
the input arrives.

Incrementality can cause an additional form of ambiguity. Example:

(2) The athlete realized his potential . . .

a. . . . at the competition.

b. . . . could make him a world-class sprinter.

This is local ambiguity: the input up to the current word is
compatible with more than one syntax tree; the ambiguity is
resolved once the rest of the input is processed.
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Local Ambiguity: Tree 1 (VP → V NP)
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. . .

(3) The athlete realized his potential at the competition.
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Local Ambiguity: Tree 2 (VP → V S)

S

NP

Det

The

N
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VP

V
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NP

Det
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N
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(4) The athlete realized his potential could make him a
world-class sprinter.
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Garden Paths

This is an example of a garden path:

both trees are compatible with the input up until potential ;
only the next word disambiguates;

however, the processor commits to a single (wrong) tree early
on, and trips up when later input is inconsistent with that tree;

presumably, the processor now has to compute a new tree
that is consistent with the input;

garden path sentences result in longer reading times, reverse
eye-movements, lower comprehension accuracies, etc.
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Garden Paths

Examples of garden paths triggered by local ambiguity:

(5) a. The complex houses married and single students.

b. The horse raced past the barn fell.

But: the following examples are not garden paths, even though
they have the same syntactic structure:

(6) a. The warehouse fires a dozen employees each year.
b. The bird found in the room died.

Our model needs to be able to explain this.
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Probabilistic Parallel Parser

Jurafsky (1996) proposes an incremental, parallel parsing model:

all (partial) parses compatible with the current input are
constructed in parallel;

each parse is assigned a probability;

parses are pruned from the search space if their probability is
a factor of α below the most probable parse: beam search;

garden paths occur when the tree that is ultimately correct
has been pruned.

How are parse probabilities determined?
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Computing Parse Probabilities

Jurafsky, 1996 focuses on two sources of information:

construction probability: the probability of a syntactic tree;

valence probability: the probability of particular syntactic
categories as arguments for a specific verbs.

Assume that construction probability and valence probability are
independent:

P(tree) = P(construction) · P(valence)

We can use a probabilistic context-free grammar to compute
P(construction).
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Probabilistic Context-free Grammars

Example (Manning & Schütze, 1999)

S → NP VP 1.0 NP → NP PP 0.4
PP → P NP 1.0 NP → astronomers 0.1
VP → V NP 0.7 NP → ears 0.18
VP → VP PP 0.3 NP → saw 0.04
P → with 1.0 NP → stars 0.18
V → saw 1.0 NP → telescopes 0.1

P(A→ B C ) is defined as P(B C |A), the probability of
deriving the right-hand side B C given the left-hand side is A;

the probabilities of all rules with the same LHS sum to one;

P(construction) =
∏

i P(rulei ) for all rules applied in tree.
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Probabilistic Context-free Grammar

Example (Manning & Schütze, 1999)

S1.0

NP0.1

astronomers

VP0.7

V1.0

saw

NP0.4

NP0.18

stars

PP1.0

P1.0

with

NP0.18

ears

P(t1) = 1.0 · 0.1 · 0.7 · 1.0 · 0.4 · 0.18 · 1.0 · 1.0 · 0.18 = 0.0009072
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Probabilistic Context-free Grammar

Example (Manning & Schütze, 1999)

S1.0

NP0.1

astronomers

VP0.3

VP0.7

V1.0

saw

NP0.18

stars

PP1.0

P1.0

with

NP0.18

ears

P(t2) = 1.0 · 0.1 · 0.3 · 0.7 · 1.0 · 0.18 · 1.0 · 1.0 · 0.18 = 0.0006804
Hence t1 more probable than t2 according to our PCFG.
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Estimating PCFG Probabilities

The probabilities of a PCFG can be estimated from a treebank, a
corpus annotated with syntactic trees.

We can use the relative frequency with which a rule A→ B C
occurs in a corpus to estimate its probability:

P(A→ B C ) =
c(A→ B C )∑

ξ c(A→ ξ)

Where c(A→ ξ) counts how often A→ ξ occurs in the corpus.

Now we can use this approach to explain the examples of local
ambiguity that we saw earlier.
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Modeling Garden Path Effects

Garden path caused by construction probabilities:
S → NP . . . 0.92 N → houses 0.00055
NP → Det Adj N 0.28 Adj → complex 0.00086
Det → the 0.71

S

NP

Det

the

Adj

complex

N

houses

. . .

P(t1) = 8.5 · 10−8 (preferred)
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Modeling Garden Path Effects

Garden path caused by construction probabilities:
NP → Det N 0.63 V → houses 0.000052
S → [NP VP[V . . . 0.48 Det → the 0.71
N → complex 0.000029

S

NP

Det

the

N

complex

VP

V

houses

. . .

P(t2) = 3.2 · 10−10 (grossly dispreferred)
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Modeling Ambiguity

Ambiguous construction, no garden path:
S → NP . . . 0.92 N → fires 0.00017
NP → Det N N 0.28

S

NP

Det

the

N

warehouse

N

fires

. . .

P(t1) = 4.2 · 10−5 (preferred)
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Modeling Ambiguity

Ambiguous construction, no garden path:
NP → Det N 0.63 V → fires 0.000036
S → [NP VP[V . . . 0.48

S

NP

Det

the

N

warehouse

VP

V

fires

. . .

P(t2) = 1.1 · 10−5 (mildly dispreferred)
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Combining Valence and Construction Probabilities

Garden path caused by construction probabilities and valence
probabilities:
P(race, 〈agent〉) = 0.92

S

NP

the horse

VP

raced

P(t1) = 0.92 (preferred)
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Combining Valence and Construction Probabilities

Garden path caused by construction probabilities and valence
probabilities:
P(race, 〈agent, theme〉) = 0.08
NP → NP XP 0.14

S

NP

NP

the horse

VP

raced

. . .

P(t2) = 0.0112 (grossly dispreferred)

24 / 29



Combining Valence and Construction Probabilities

Disambiguation using construction probabilities and valence
probabilities, no garden path:
P(find, 〈agent〉) = 0.38

S

NP

the bird

VP

found

P(t1) = 0.38 (preferred)
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Combining Valence and Construction Probabilities

Disambiguation using construction probabilities and valence
probabilities, no garden path:
P(find, 〈agent, theme〉) = 0.62
NP → NP XP 0.14

S

NP

NP

the bird

VP

found

. . .

P(t2) = 0.0868 (mildly dispreferred)
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Setting the Beam Width

Crucial assumption: if the relative probability of a tree falls below a
certain value, then it will be pruned.

sentence probability ratio

the complex houses . . . 267:1
the horse raced . . . 82:1

the warehouse fires . . . 3.8:1
the bird found . . . 3.7:1

Assumption: a garden path occurs if the probability ratio is greater
than threshold α (here: α ≈ 5).
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Summary

Sentences processing (parsing) is the task of assigning a
syntax tree to a string of words;

human sentence processing is incremental (word by word);
this can lead to local ambiguity;

garden paths derive from local ambiguities that are hard to
resolve; they lead to longer processing times;

Jurafsky, 1996 proposes an incremental, probabilistic parser as
a model of human sentence processing;

key modeling assumptions:

combination of PCFG probabilities and valence probabilities;
pruning of improbable trees (beam search);
garden paths happen when correct tree has been pruned.
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