Computational Cognitive Science Lecture 10: Concept Learning

Chris Lucas (Slides adapted from Frank Keller's)

School of Informatics University of Edinburgh clucas2@inf.ed.ac.uk

20 October, 2017

イロト 不得下 イヨト イヨト 二日

1/23

Introduction

Concepts vs. Categories Generalization

Experimental Evidence

The Number Game Types of Trials

Modeling Concept Learning

Bayesian Model Alternative Models Results

Reading: Tenenbaum, 2000.

Bayesian Inference

Last time, we saw two approaches to drawing inferences from data. *MLE and MAP: choose the best hypothesis:*

- can work well if one hypothesis is strongly favored (usually when we have lots of data);
- but not mathematically optimal, and works poorly when many hypotheses are plausible (usually when there's little data).
- Bayesian estimation: average over hypotheses:
 - makes mathematically optimal inferences;
 - more complex (more computation); we don't know how humans are performing these computations.

Today: human behavior can be modeled as Bayesian inference in the domain of *concept learning*.

Concepts vs. Categories

Tenenbaum (2000) addresses the question of how people quickly learn new concepts:

- concepts could be categories (dog, chair) or more vague ("healthy level" for a specific hormone, "ripe" for a pear);
- here, we will focus on number concepts ("odd number", "between 30 and 45").

Generalization is a key feature of concept learning: given a small number of positive examples, determine which other examples are also members of the concept.

Generalization

Given some examples of a concept, determine which other things belong to that concept. Two basic strategies:

- rule-based generalization: find a rule that describes the examples and apply it: *deterministic predictions;*
- similarity-based generalization: identify features of the examples and the new item, and decide based on how many features are shared: *probabilistic predictions*.

People use both strategies, but in different circumstances. (See categorization: decision-boundary models vs. exemplar models.)

Generalization

Tenenbaum (2000) presents a Bayesian model of concept learning:

- the model can exhibit both rule-based and similarity-based behavior;
- but it is not a hybrid model: it uses only one mechanism, rules and similarity are special cases;
- explains how people can generalize from very few examples;
- Bayesian hypothesis averaging is a key feature of the model.

The model is trained on data from *number concept* learning.

The Number Game

I think of a "number concept" (a subset of numbers 1-100).

- odd numbers;
- powers of two;
- numbers between 23 and 34.

I choose some examples of this concept at random and show them to you:

- ► {3, 57};
- ▶ {16, 2, 8};
- ▶ {25, 31, 24}.

You guess what other numbers are also included in the concept.

Subjects are told how the game works.

Then, a few examples of the concept are presented:

- class I trials: only one example;
- class II trials: four examples, consistent with a simple mathematical rule;
- class III trials: four examples, similar in magnitude.

Subjects then rate the probability that other numbers (randomly chosen from 1-100) are also part of the concept.

Class I Trials

Only one example is given (16 or 60). Results:

 responses fairly uniform, but slightly higher ratings for similar magnitude, similar mathematically;

 even numbers (both), powers of two (16), multiples of ten (60).

Notes: stars show examples given; missing bars are not zero, just were not queried.

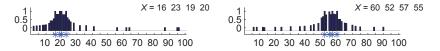
Class II Trials

Four examples were given, consistent with a simple mathematical rule ($\{16, 8, 2, 64\}$ or $\{60, 80, 10, 30\}$). Results:

- responses reflect most specific rule consistent with examples, other numbers have a probability near zero;
- these rules are not the only logical possibility: {16, 8, 2, 64} could be "even numbers", for example.

Class III Trials

Four examples were given that didn't follow a simple rule, but were similar in magnitude ($\{16, 23, 19, 20\}$ or $\{60, 52, 57, 55\}$). Results:



- responses reflect similarity gradient by magnitude;
- Iow probability for number more than a fixed distance away from the largest or smallest example.

Bayesian Model

Given data $X = \{x^{(1)}, \dots, x^{(n)}\}$ sampled from concept *C*, we want to determine $P(y \in C|X)$ for new data point *y*.

As in many inference problems, a hidden variable (C) determines the inference, but we don't know C, so we will average over it:

$$P(y \in C|X) = \sum_{h \in H} P(y \in C|C = h)P(C = h|X)$$

To compute the *posterior* P(C = h|X), we need to decide:

- What is the hypothesis space H?
- What is the prior distribution over hypotheses?
- What is the likelihood function?

Hypothesis Space

In theory, all possible subsets of numbers 1-100.

The full space too large; we consider only salient subsets:

- subsets defined by mathematical properties: odds, evens, primes, squares, cubes, multiples and powers of small numbers, numbers with same final digit;
- subsets defined by similar magnitude: intervals of consecutive numbers.

Total: 5083 hypotheses.

Prior P(C = h)

First, assign a probability to each type of hypothesis:

- $P(C \text{ is defined mathematically}) = \lambda;$
- $P(C \text{ is defined as an interval}) = 1 \lambda$.

Use $\lambda = \frac{1}{2}$.

Then assign probabilities within these types:

- all mathematical hypotheses are equally probable;
- medium-sized intervals are more probable than small or large intervals (Erlang distribution).

Likelihood P(X|C = h)

Assume examples are sampled uniformly at random from C.

For hypothesis h containing |h| numbers, each number in h is drawn as an example with probability 1/|h|, so:

$$P(X = x^{(1)} \dots x^{(n)} | h) = \begin{cases} \frac{1}{|h|^n} & \text{if } \forall j, x^{(j)} \in h \\ 0 & \text{otherwise} \end{cases}$$

Ex. For h = "multiples of five", |h| = 20, $P(10, 35|h) = 1/20^2$.

Size principle: for fixed data, smaller hypotheses have higher likelihood than larger hypotheses. As data increases, smaller hyps have exponentially higher likelihood than larger hypotheses.

Inference over Posterior

Draw inferences by averaging over hypotheses:

$$P(y \in C|X) = \sum_{h \in H} P(y \in C|C = h)P(C = h|X)$$

 $P(y \in C | C = h)$ is either 0 or 1.

The posterior P(C = h|X) is computed using Bayes' rule, with likelihood and prior as defined above:

$$P(C = h|X) = \frac{P(X|C = h)P(C = h)}{P(X)}$$

・ロン ・四 ・ ・ ヨン ・ ヨン … ヨ

16 / 23

Alternative Models

Similarity model (SIM):

- consider as "features" of each example set the hypotheses that contain all example numbers;
- ► P(y ∈ C|X) computed as number of common features between y and X (number of hyps containing both X and y).

	Even numbers	Btw 10–80
10, 60, 80, 30 \Longrightarrow	Mults of 5	Btw 9–84
	Mults of 10	Btw 1–93

Equivalent to 0/1 likelihood:

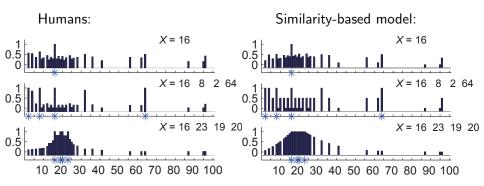
$$P(X = x^{(1)} \dots x^{(n)} | h) = \begin{cases} 1 & \text{if } \forall j, x^{(j)} \in h \\ 0 & \text{otherwise} \end{cases}$$

Alternative Models

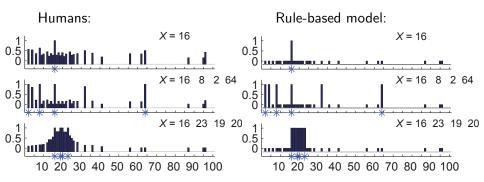
Rule-based model (MIN):

- replaces hypothesis averaging with maximization (i.e. MAP estimate): always choose the highest probability hypothesis;
- since priors are weak, guided by likelihood: always selects the smallest (most specific) consistent rule (size principle);
- reasonable when this rule (hypothesis) is much more probable than all others (Class II);
- not reasonable when many hypotheses have similar probabilities (Class I and III).

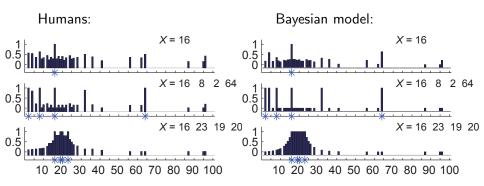
Results



Results



Results



Conclusions

- Previous work suggested two different mechanisms for concept learning: rules or similarity;
- no explanation for why one of them is used in any given case;
- Bayesian model suggests these are two special cases of a single system implementing Bayesian inference;
- this results stems from an interaction between:
 - hypothesis averaging: yields similarity-like behavior when many hypotheses have similar probability;
 - size principle: yields rule-like behavior when one hypothesis is much more probable than others;
- though still possible these could be implemented in the brain with two different mechanisms.

References

Tenenbaum, J. B. (2000). Rules and similarity in concept learning. In Advances in neural information processing systems (pp. 59–65).