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Reading:

I Chapters 5 and 6 of L&F.;

I Ockham’s razor and Bayesian analysis (Jefferys and Berger,
1992) 1.

1http://www.jstor.org/stable/29774559
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Last time

We discussed model comparison, focusing on:

I Model fit, using data likelihood given parameters θ̂ obtained
by MLE.

I Model complexity, using numbers of parameters.

Under this approach, we can compare models using straightforward
tests and criteria: likelihood ratio test, BIC, AIC.

Today we’ll take a longer look at model complexity.
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Simplicity

“Simple” can mean many things, including:

I Easy to understand or compute

I Have few “moving parts” or
degrees of freedom

LLR, BIC, and AIC approximate the
latter by counting parameters.

https://xkcd.com/1155/
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Complexity isn’t just |θ|

If we could compute P(y|M), we could estimate predictive
accuracy and likelihood ratios directly.

Counting parameters is a way to compensate for using P(y|θ̂,M)
rather than P(y|M).

Parameter counting can sometimes lead us astray. AIC and BIC
make assumptions that are often violated. Sometimes this is
acceptable; in other cases, less so.
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Example 1: Hidden flexibility

Suppose we elicit judgments in [−1, 1] from participants in four
experimental conditions. Our model makes the predictions below.
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Compare to a model that says conditions 1 and 2 should be
identical (θ1) and conditions 3 and 4 should be slower (θ1 + θ2)

6 / 24



Example 2: Adding parameters without increasing flexibility

Suppose we want to estimate decay-rate differences across words
in our phological loop model.

I Model 1: Every word has an idiosyncratic decay rate: |w|
parameters.

I Model 2: There’s a frequency effect, plus the above: |w|+ 1
parameters.

Model 2 has more parameters, but we can bundle frequency effects
with the other |w| parameters.

Bonus questions:

I Why is MLE problematic here?

I Why might we prefer model 2?
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Example 3: Nonparametric models

Some models can fit complex patterns in data with a small number
of parameters (3).
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Flexibility and priors

Flexible models assigns non-negligible likelihood to a wide variety
of outcomes, including many that never come to pass.

If they can fit the data we have seen, we should hesitate to
conclude they generalize well.

This doesn’t imply we should avoid flexible models. Having priors
over parameters is a way to balance flexibility and generalization.
See the Jefferys and Berger (1992) reading for a discussion of the
Bayesian Occam’s razor2.

2Also spelled “Ockam’s razor”.
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Model comparison – What to do?

I In a perfect world: Use held-out test data. However:
I Data can be expensive to collect
I How to make such a comparison fair?

I Parameter-counting works reasonably well for many models
I Cross-validation (leave-one-out, k-fold)

I Pros: More general and robust than AIC, BIC
I Cons: More computationally expensive
I Take care what you leave out
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Quiz 1

Which of the following models of planetary motion provides the
simplest explanation of the observed trajectories of the planets?

I Keplerian model

I Copernican model

I Ptolomaic model
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Quiz 1

Which of the following models of planetary motion provides the
best fit with the observed trajectories?

I Copernican model

I Keplerian model

I Ptolomaic model
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Quiz 1

Which of the following is not a way of quantifying model fit?

I 2 statistic

I Negative log likelihood

I Mean squared error

I Acceptance function
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Quiz 1

What is the word length effect?

I Longer words are less likely to be recalled correctly

I Longer words are more likely to be recalled correctly

I Longer word lists lead to higher error rates

I Longer word lists take longer to recall in their entirety

I Longer words take longer to be recalled, individually

I Longer words take longer to be mentally rehearsed
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Quiz 1

Which of the following best describes an error surface?

I a plot of the error dependent on the parameters of a model

I the quantity a parameter estimation algorithm tries to
minimize

I a visualization of the local minima of model

I a visualization of the global minima of model
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Quiz 1

How does simulated annealing deal with local minima?

I when it reaches a local minimum, it jumps to a random part
of the error surface

I it uses the annealing schedule to control the search space

I it investigates multiple local minima at the same time and
then returns the best one

I it allows updates to the parameters that increase the error
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Quiz 1

In simulated annealing as described in lecture, which of the
following must be tuned? (More than one may apply.)

I candidate function

I learning rate

I momentum

I annealing schedule
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Quiz 1

Which of the following conditions suggest that it would be unwise
to use simulated annealing as described in lecture?

I there are many local optima

I there is an analytic solution for minimizing the error function

I the first derivative of the error function is easy to compute

I the second derivative of the error function is difficult to
compute

I there are many (e.g., > 5000) parameters to optimize
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Quiz 1

Which of the follow statements are true of maximum likelihood
estimation?

I If we can compute the MLE for g(theta), we can always use
that to find the value of theta that maximizes the likelihood
function

I For a well-specified model, MLE can yield an arbitrarily precise
estimate for a parameter given a data set with a bounded size

I MLE yields the lowest-possible variance in parameter estimates

I MLE finds the parameters that give the highest probability (or
probability density) for the data

I MLE find the values of the parameters that have the highest
probability (or probability density) given the data
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Quiz 1
Suppose you work at a factory making trick coins that are biased
to flip heads or tails at different rates than 50 percent of the time.
Your job is to understand the biases of coins that are coming out
of the coin-making machine. For a given coin, you flip it twice and
compute the MLE of its probability of coming up heads on a given
flip.

I As you flip more coins, your distribution of MLEs will look
more and more like a normal distribution.

I You can use a Binomial probability mass function to obtain
the MLE for each coin’s bias.

I If the coins are manufactured using a common process, a
good way to estimate the typical coin’s bias is to take the
mode of the maximum likelihood estimates you’ve obtained.

I Testing a larger number of coins using the same experiment is
a good way to learn about individual differences between the
coins.
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