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Reading: Chapters 4 and 5 of L&F.
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Maximum Likelihood Estimate

Idea behind maximum likelihood estimation: determine parameter
values such that they maximize the likelihood of the data.

The maximum likelihood estimate (MLE) θ̂ of a parameter θ is:

θ̂ = arg max
θ

L(θ|y) = arg max
θ

P(y |θ)

We discussed this in the previous lecture; now we are interested in
how the MLE can be obtained.
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Finding the Maximum Likelihood

In the general case, we will have not just one data point, but
many, and a vector of parameters. We compute the joint likelihood
of the data points (assumed to be independent):

L(θ|y) =
k∏

L(θ|yk)

Example: ex-Gaussian model: assume the data vector
y = [3 4 4 4 4 5 5 6 6 7 8 9] and plot:

L(θ|y) = L(µ, τ, σ = 0.1|y)

We want to find the mode of the likelihood function: it gives us
the maximum likelihood estimate of the parameters.
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Finding the Maximum Likelihood
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Optimizing log Likelihood

To find the mode of L(θ|y), we can use the optimization methods
discussed in lecture 3 (Nelder-Mead, simulated annealing), among
others. Note however that:

I we are now maximizing rather than minimizing;

I sometimes there is an analytic solution (i.e., we can
differentiate L(θ|y) and get the maximum that way);

I typically we maximize the logarithm of the likelihood; this
makes the maths easier and avoids numeric underflow.

ln L(θ|y) =
K∑

k=1

ln L(θ|yk)
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Fitting Individuals or Groups

We can use maximum likelihood estimation to fit a separate set of
parameters for each participant. Then we can:

I plot histograms of parameter values;

I report mean parameter values and estimate their variability;

I sum the log likelihoods of the models for all participants to
get a measure of fit for the whole data set;

I compare the optimal parameter values (and log likelihoods)
for subgroups of participants.
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Fitting Individuals or Groups

If we want to fit a single set of parameters for the whole data set:

I we can aggregate the data and fit averages (e.g., mean
proportion correct, rather than individual proportion correct);

I this changes the interpretation of our model (it is now
modeling average data);

I we may also need a new data model (e.g., Gaussian
distribution instead of binomial distribution);

I note that for the Gaussian distribution, minimizing RMSD is
the equivalent to finding the MLE.
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Properties of Maximum Likelihood Estimation

Maximum likelihood estimation has attractive theoretical
properties (assuming the likelihood function is continuous and the
parameters are identifiable):

I parametrization invariance: finding the MLE of g(θ) is
equivalent to finding the MLE of θ and then applying g . May
not be useful if g(θ) is not invertible.

I consistency: as the sample size increases, the estimated
parameter values converge to the true parameter values.
Assumes that mode is not misspecified.

I efficiency: maximum likelihood estimation delivers the least
variable parameters estimates (asymptotically).

I asymptotic normality: MLEs are asymptotically normally
distributed.
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Often we need to quantify the uncertainty of parameter estimates.
Sources of variability and uncertainty:

I Uncertainty and variability in our model, including nuisance
parameters: Additional parameters that we can’t easily
estimate and may not care about, but still have to represent,
e.g., decay of individual words in the Baddeley model.

I Variability in our data: Individuals differ, as do responses by a
single individual.

If we compute MLEs for two different data sets, we are likely to
obtain different results.

The model itself can also be uncertain. Model comparison is a way
of determining the best model for a given data set – stay tuned.
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How can we know how good our estimates are, and what
parameter values are plausible given our data?

I Bayesian inference is a principled approach to this problem,
but it requires us to specify priors – more on this later.

I Alternately, compute standard errors for parameter estimates.
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Standard Errors

If we fit a separate model for each participant, then we typically
report the mean across participants for our parameter values.

We can then compute the standard error SE x̄ around the mean x̄
to quantify the uncertainty of the parameter estimates:

SE x̄ =
s√
n

where s is the standard deviation of the variable, and n is the
sample size (number of participants).

Standard statistical tests (t-test, Anova) can then be applied based
on the standard errors.
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Standard Errors
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Summary

I Maximum likelihood estimation finds parameter values that
maximize the likelihood function, given the data;

I It can be useful to visualize data likelihood as a function of
parameters (where possible)

I MLE has attractive theoretical properties: parametrization
invariance; consistency; efficiency; asymptotic normality (but
these shouldn’t be over-interpreted);

I if we fit a separate model for each participant, then we can
compute standard errors for our parameter estimates;
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