Computational Cognitive Science

Lecture 4: Maximum Likelihood Estimation

Chris Lucas (Slides adapted from Frank Keller's)

School of Informatics University of Edinburgh clucas2@inf.ed.ac.uk

29 September, 2017

Introduction

Likelihood

Examples

Maximum Likelihood Estimate

Defining a Likelihood Function

The SIMPLE Model of Serial Recall
The Data Model

Readings:

- ► Chapter 4 of L&F
- ► Sharon Goldwater's notes on basic probability theory (link)

Probabilistic models

A cognitive model M is probabilistic if it generates a probability distribution *conditional* on M and its *parameters* θ .

These have some appealing features; today we'll focus on connections to parameter estimation.

Likelihood

Suppose we have K observations $y_1, y_2, ..., y_K$. The k^{th} individual observation is y_k and the full sequence of observations \mathbf{y} .

 $P(y_k|\theta, M)$ is the *probability mass function*¹ for an observation y_k given θ and M (M is often constant, and thus omitted).

If all of our observations are independent, their joint probability is

$$P(\mathbf{y}|\theta) = \prod_{k} P(y_k|\theta)$$

 $^{^1}$ For discrete observations, e.g., whole-numbers of milliseconds. $\Rightarrow \quad \Rightarrow \quad \Rightarrow \quad \Rightarrow \quad \checkmark$

Likelihood

It's common to treat θ as fixed and $P(\mathbf{y}|\theta)$ as a function of \mathbf{y} .

Let's instead treat \mathbf{y} as fixed, and treat θ as the varying argument. This is called the *likelihood function*.

L&F use the notation $L(\theta|\mathbf{y})$.

If we want to turn this into a discrepancy function, a common choice is the negative log-likelihood: $-\log(L(\theta|\mathbf{y}))$.

Notation

We're using simplified notation, omitting what should be clear from context, e.g., $P(y_k)$ rather than $P(Y_k = y_k)$.

 $P(\mathbf{y}|\theta)$: Probability mass function for \mathbf{y} conditional on θ .

 $f(\mathbf{y}|\theta)$: Probability density function² for \mathbf{y} conditional on θ . Sometimes denoted with $p(\mathbf{y}|\theta)$ (notice the lowercase).

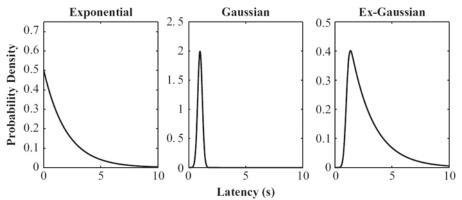
 $L(\theta|\mathbf{y})$: Likelihood function, interpreting either of the above as a unary function of θ . Not the same as $P(\theta|\mathbf{y})$ or $P^{-1}(\mathbf{y}|\theta)$!

(Also important to know: *cumulative density function* and *cumulative mass function*).

 $^{^2}$ For continuous variables; see L&W and Goldwater's notes. $\bullet = \bullet \bullet = \bullet$

Example: Reaction Times

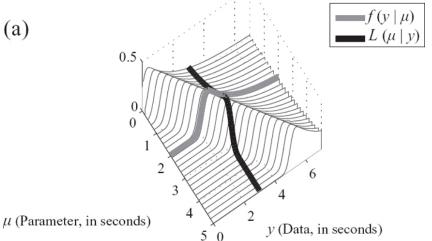
The exponential Gaussian function captures latencies (reaction times) from a choice experiment.



The ex-Gaussian has the following parameters: μ , σ , and τ . Let's only consider μ for now.

Example: Reaction Times

For a single data point y and the parameter μ , we get the following probability density function $f(y|\mu)$:

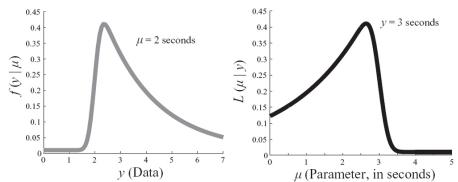


The gray line marks $f(y|\mu=2)$, the black one $L(\mu|y=3)$.

Example: Reaction Times

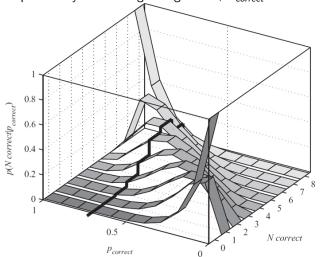
Typically, we have collected some data, and want to estimate the parameters of our model. The likelihood function $L(\mu|y)$ tells us how probable a parameter value is given this data.

If we just plot $f(y|\mu=2)$ and $L(\mu|y=3)$, we get:



Example: Recall Scores

Distribution over recalled items (N correct) in a memory experiment. Parameter: probability of recalling a single item, $P_{correct}$.



Black line: $f(N correct | P_{correct} = 0.7)$; ribbons: $L(P_{correct} | N correct)$.

Maximum Likelihood Estimate

Idea behind maximum likelihood estimation: determine parameter values such that they maximize the likelihood of the data.

The maximum likelihood estimate (MLE) $\hat{\theta}$ of a parameter θ is:

$$\hat{\theta} = \arg\max_{\theta} L(\theta|y)$$

This is not the same as maximizing the probability of the parameter given the data:

$$\hat{\theta} = rg \max_{\theta} P(\theta|y) = rg \max_{\theta} \frac{P(y|\theta)P(\theta)}{P(y)}$$

This is the *maximum a posteriori estimate* to which we return in when we discuss Bayesian estimation.

Maximum Likelihood Estimate

Idea behind maximum likelihood estimation: determine parameter values such that they maximize the likelihood of the data.

The maximum likelihood estimate (MLE) $\hat{\theta}$ of a parameter θ is:

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,max}} L(\theta|y) = \underset{\theta}{\operatorname{arg\,max}} P(y|\theta)$$

This is not the same as maximizing the probability of the parameter given the data:

$$\hat{\theta} = \arg\max_{\theta} P(\theta|y) = \arg\max_{\theta} \frac{P(y|\theta)P(\theta)}{P(y)}$$

This is the *maximum a posteriori estimate* to which we return in when we discuss Bayesian estimation.

Maximum Likelihood Estimate

Idea behind maximum likelihood estimation: determine parameter values such that they maximize the likelihood of the data.

The maximum likelihood estimate (MLE) $\hat{\theta}$ of a parameter θ is:

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,max}} L(\theta|y) = \underset{\theta}{\operatorname{arg\,max}} P(y|\theta)$$

This is not the same as maximizing the probability of the parameter given the data:

$$\hat{\theta} = rg \max_{\theta} P(\theta|y) = rg \max_{\theta} \frac{P(y|\theta)P(\theta)}{P(y)}$$

This is the *maximum a posteriori estimate* to which we return in when we discuss Bayesian estimation.

Defining a Likelihood Function

We first need to specify a function $f(y|\theta)$ that maps data values (outcomes of an experiment) onto probabilities.

Sometimes, the probability density function can be specified directly, e.g., the ex-Gaussian function for reaction times:

$$f(y_k|\mu,\sigma,\tau) = \frac{1}{\tau} \exp\left(\frac{\mu - y_k}{\tau} + \frac{\sigma^2}{2\tau^2}\right) \Phi\left(\frac{y_k - \mu}{\sigma} - \frac{\sigma}{\tau}\right)$$

where Φ is the Gaussian cumulative distribution.

We assume that there are two components that generate reaction times: time to make a decision (exponential) and time for encoding and motor movement (Gaussian).

However, sometimes we additionally need a *data model* to relate data values to model probabilities.

The SIMPLE Model of Serial Recall

The SIMPLE model (Brown, Neath, & Chater, 2007) predicts serial recall, i.e., the accuracy of recalling an item at a certain position in a list.

Assumptions:

- distinctiveness (i.e., the extent to which an items differs from other items) determines accuracy of recall;
- the distinctiveness criterion is time: during recall, we select the target items among items that occurred at around the same time;
- time is logarithmic, i.e., items that occurred longer ago are harder to distinguish.

The SIMPLE Model of Serial Recall

Let T_r be the time of retrieval, and T_i and T_j the times associated with items i and j. The psychological distance in time is then given by $M_i = \log(T_r - T_i)$ and $M_j = \log(T_r - T_j)$.

The similarity of two items is then given by:

$$\eta_{ij} = \exp(-c|M_i - M_j|)$$

where c is a scaling parameter. Then the probability of recalling item j given a probe i is:

$$P(j|i) = \frac{\eta_{ij}}{\sum_{k} \eta_{ik}}$$

where k ranges over all candidates. Note this is like the GCM, but using temporal similarity instead of feature similarity.

The SIMPLE Model of Serial Recall

If we set j = i, we get the probability of correctly recalling an item:

$$P_{correct}(i) = \frac{1}{\sum_{k} \eta_{ik}}$$

```
function pcor = SIMPLEserial(c, presTime, recTime, J)
pcor = zeros(1,J);
Ti = cumsum(repmat(presTime,1,J));
Tr = Ti(end) + cumsum(repmat(recTime,1,J));

for i=1:J % i indexes output + probe position
    M = log(Tr(i)-Ti);
    eta = exp(-c*abs(M(i)-M));
    pcor(i) = 1./sum(eta);
end
```

SIMPLE predicts a probability of correct recall for each serial position, but it doesn't predict a probability *distribution*.

In an experiment, the observed proportion correct varies from trial to trial because of sampling variability.

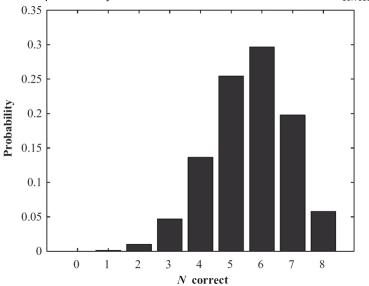
We can use the **binomial distribution** to model this:

$$b(x|\theta,n) = \binom{n}{x} \theta^{x} (1-\theta)^{n-x}$$

Assuming $N_c(i)$ correct recalls out of n trials, we get:

$$P(N_C(i)|P_{correct}(i), n) = \binom{n}{N_C(i)} P_{correct}^{N_C(i)} (1 - P_{correct})^{n - N_C(i)}$$

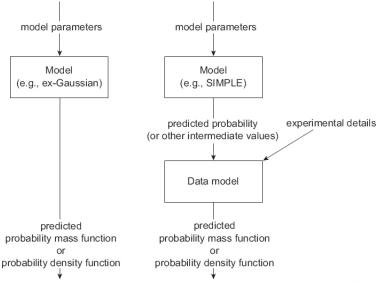
Distribution predicted by SIMPLE with binomial data model for $P_{correct} = 0.7$:



Implementation of SIMPLE with data model:

```
function pmf = SIMPLEserialBinoPMF(c, presTime, recTime, J, Nc, N)
% c is the parameter of SIMPLE
% presTime and recTime are the effective temporal
% separation of items at input and output
% J is the length of the list
% Nc (a vector) is no. of items correctly recalled at each pos.
% N is the number of trials at each position
pmf = zeros(1,J);
Ti = cumsum(repmat(presTime,1,J));
Tr = Ti(end) + cumsum(repmat(recTime,1,J));
for i=1:J % i indexes output + probe position
    M = log(Tr(i)-Ti);
    eta = exp(-c*abs(M(i)-M));
    pcor = 1./sum(eta);
    pmf(i) = binomPMF(Nc(i), N, pcor);
end
```

If the model doesn't predict a distribution, we use a data model:



We need to be careful to distinguish the following different probabilities:

- the probability P_{correct}(i) of correct recall predicted by SIMPLE;
- ▶ the probability of correct recall in the data, $\frac{N_C}{N}$;
- ▶ the probability of each outcome N_C predicted by SIMPLE after applying the data model.

We can extend the data model to accommodate multiple outcomes (not just correct/incorrect, but type of error), see L&F, ch. 4.3.4.

Summary

- ▶ The likelihood of a model $L(\theta|y)$ is the probability of the data given the parameters, where we keep the data fixed;
- ▶ maximum likelihood estimation computes $\arg\max_{\theta} L(\theta|y)$, i.e., the parameters that maximize model likelihood;
- the SIMPLE model of memory recall assumes that temporal determines accuracy of recall;
- sometimes we need a data model to predict a probability distribution from the output of our model.

References

- Brown, G. D., Neath, I., & Chater, N. (2007). A temporal ratio model of memory. *Psychological Review*, 3(114), 539–76.
- Goldwater, S. (2017). Basic probability theory. Retrieved from http://homepages.inf.ed.ac.uk/sgwater/teaching/general/ probability.pdf
- Lewandowsky, S. & Farrell, S. (2011). Computational modeling in cognition: Principles and practice. Thousand Oaks, CA:

 Sage.