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Readings:

I Chapter 4 of L&F

I Sharon Goldwater’s notes on basic probability theory (link)
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http://homepages.inf.ed.ac.uk/sgwater/teaching/general/probability.pdf


Probabilistic models

A cognitive model M is probabilistic if it generates a probability
distribution conditional on M and its parameters θ.

These have some appealing features; today we’ll focus on
connections to parameter estimation.

3 / 22



Likelihood

Suppose we have K observations y1, y2, ..., yK . The kth individual
observation is yk and the full sequence of observations y.

P(yk |θ,M) is the probability mass function1 for an observation yk
given θ and M (M is often constant, and thus omitted).

If all of our observations are independent, their joint probability is

P(y|θ) =
k∏

P(yk |θ)

1For discrete observations, e.g., whole-numbers of milliseconds.
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Likelihood

It’s common to treat θ as fixed and P(y|θ) as a function of y.

Let’s instead treat y as fixed, and treat θ as the varying argument.
This is called the likelihood function.

L&F use the notation L(θ|y).

If we want to turn this into a discrepancy function, a common
choice is the negative log-likelihood: − log(L(θ|y)).
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Notation

We’re using simplified notation, omitting what should be clear
from context, e.g., P(yk) rather than P(Yk = yk).

P(y|θ): Probability mass function for y conditional on θ.

f (y|θ): Probability density function2 for y conditional on θ.
Sometimes denoted with p(y|θ) (notice the lowercase).

L(θ|y): Likelihood function, interpreting either of the above as a
unary function of θ. Not the same as P(θ|y) or P−1(y|θ)!

(Also important to know: cumulative density function and
cumulative mass function).

2For continuous variables; see L&W and Goldwater’s notes.
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Example: Reaction Times

The exponential Gaussian function captures latencies (reaction
times) from a choice experiment.

The ex-Gaussian has the following parameters: µ, σ, and τ . Let’s
only consider µ for now.
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Example: Reaction Times

For a single data point y and the parameter µ, we get the
following probability density function f (y |µ):

The gray line marks f (y |µ = 2), the black one L(µ|y = 3).
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Example: Reaction Times

Typically, we have collected some data, and want to estimate the
parameters of our model. The likelihood function L(µ|y) tells us
how probable a parameter value is given this data.

If we just plot f (y |µ = 2) and L(µ|y = 3), we get:
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Example: Recall Scores
Distribution over recalled items (N correct) in a memory experiment.
Parameter: probability of recalling a single item, Pcorrect .

Black line: f (N correct|Pcorrect = 0.7); ribbons: L(Pcorrect |N correct).
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Maximum Likelihood Estimate

Idea behind maximum likelihood estimation: determine parameter
values such that they maximize the likelihood of the data.

The maximum likelihood estimate (MLE) θ̂ of a parameter θ is:

θ̂ = arg max
θ

L(θ|y)

= arg max
θ

P(y |θ)

This is not the same as maximizing the probability of the
parameter given the data:

θ̂ = arg max
θ

P(θ|y) = arg max
θ

P(y |θ)P(θ)

P(y)

This is the maximum a posteriori estimate to which we return in
when we discuss Bayesian estimation.
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Defining a Likelihood Function

We first need to specify a function f (y |θ) that maps data values
(outcomes of an experiment) onto probabilities.

Sometimes, the probability density function can be specified
directly, e.g., the ex-Gaussian function for reaction times:

f (yk |µ, σ, τ) =
1

τ
exp

(
µ− yk
τ

+
σ2

2τ2

)
Φ

(
yk − µ
σ

− σ

τ

)
where Φ is the Gaussian cumulative distribution.

We assume that there are two components that generate reaction
times: time to make a decision (exponential) and time for encoding
and motor movement (Gaussian).

However, sometimes we additionally need a data model to relate
data values to model probabilities.

12 / 22



The SIMPLE Model of Serial Recall

The SIMPLE model (Brown, Neath, & Chater, 2007) predicts
serial recall, i.e., the accuracy of recalling an item at a certain
position in a list.

Assumptions:

I distinctiveness (i.e., the extent to which an items differs from
other items) determines accuracy of recall;

I the distinctiveness criterion is time: during recall, we select
the target items among items that occurred at around the
same time;

I time is logarithmic, i.e., items that occurred longer ago are
harder to distinguish.
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The SIMPLE Model of Serial Recall

Let Tr be the time of retrieval, and Ti and Tj the times associated
with items i and j . The psychological distance in time is then given
by Mi = log(Tr − Ti ) and Mj = log(Tr − Tj).

The similarity of two items is then given by:

ηij = exp(−c |Mi −Mj |)

where c is a scaling parameter. Then the probability of recalling
item j given a probe i is:

P(j |i) =
ηij∑
k ηik

where k ranges over all candidates. Note this is like the GCM, but
using temporal similarity instead of feature similarity.
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The SIMPLE Model of Serial Recall
If we set j = i , we get the probability of correctly recalling an item:

Pcorrect(i) =
1∑
k ηik

function pcor = SIMPLEserial(c, presTime, recTime, J)

pcor = zeros(1,J);

Ti = cumsum(repmat(presTime,1,J));

Tr = Ti(end) + cumsum(repmat(recTime,1,J));

for i=1:J % i indexes output + probe position

M = log(Tr(i)-Ti);

eta = exp(-c*abs(M(i)-M));

pcor(i) = 1./sum(eta);

end
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The Data Model

SIMPLE predicts a probability of correct recall for each serial
position, but it doesn’t predict a probability distribution.

In an experiment, the observed proportion correct varies from trial
to trial because of sampling variability.

We can use the binomial distribution to model this:

b(x |θ, n) =

(
n

x

)
θx(1− θ)n−x

Assuming Nc(i) correct recalls out of n trials, we get:

P(NC (i)|Pcorrect(i), n) =

(
n

NC (i)

)
P
NC (i)
correct(1− Pcorrect)

n−NC (i)
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The Data Model

Distribution predicted by SIMPLE with binomial data model for Pcorrect = 0.7:
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The Data Model
Implementation of SIMPLE with data model:

function pmf = SIMPLEserialBinoPMF(c, presTime, recTime, J, Nc, N)

% c is the parameter of SIMPLE

% presTime and recTime are the effective temporal

% separation of items at input and output

% J is the length of the list

% Nc (a vector) is no. of items correctly recalled at each pos.

% N is the number of trials at each position

pmf = zeros(1,J);

Ti = cumsum(repmat(presTime,1,J));

Tr = Ti(end) + cumsum(repmat(recTime,1,J));

for i=1:J % i indexes output + probe position

M = log(Tr(i)-Ti);

eta = exp(-c*abs(M(i)-M));

pcor = 1./sum(eta);

pmf(i) = binomPMF(Nc(i), N, pcor);

end
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The Data Model

If the model doesn’t predict a distribution, we use a data model:
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The Data Model

We need to be careful to distinguish the following different
probabilities:

I the probability Pcorrect(i) of correct recall predicted by
SIMPLE;

I the probability of correct recall in the data, NC
N ;

I the probability of each outcome NC predicted by SIMPLE
after applying the data model.

We can extend the data model to accommodate multiple outcomes
(not just correct/incorrect, but type of error), see L&F, ch. 4.3.4.
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Summary

I The likelihood of a model L(θ|y) is the probability of the data
given the parameters, where we keep the data fixed;

I maximum likelihood estimation computes arg maxθ L(θ|y),
i.e., the parameters that maximize model likelihood;

I the SIMPLE model of memory recall assumes that temporal
determines accuracy of recall;

I sometimes we need a data model to predict a probability
distribution from the output of our model.

21 / 22



References

Brown, G. D., Neath, I., & Chater, N. (2007). A temporal ratio
model of memory. Psychological Review, 3(114), 539–76.

Goldwater, S. (2017). Basic probability theory. Retrieved from
http://homepages.inf.ed.ac.uk/sgwater/teaching/general/
probability.pdf

Lewandowsky, S. & Farrell, S. (2011). Computational modeling in
cognition: Principles and practice. Thousand Oaks, CA:
Sage.

22 / 22

http://homepages.inf.ed.ac.uk/sgwater/teaching/general/probability.pdf
http://homepages.inf.ed.ac.uk/sgwater/teaching/general/probability.pdf

	Introduction
	Likelihood
	Examples
	Maximum Likelihood Estimate

	Defining a Likelihood Function
	The SIMPLE Model of Serial Recall
	The Data Model


