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Readings:
» Chapter 4 of L&F

» Sharon Goldwater's notes on basic probability theory (link)
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http://homepages.inf.ed.ac.uk/sgwater/teaching/general/probability.pdf

Probabilistic models

A cognitive model M is probabilistic if it generates a probability
distribution conditional on M and its parameters 6.

These have some appealing features; today we'll focus on
connections to parameter estimation.
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Likelihood

Suppose we have K observations y1, y», ..., yk. The k" individual
observation is y, and the full sequence of observations y.

P(yk|6, M) is the probability mass function® for an observation yj
given § and M (M is often constant, and thus omitted).

If all of our observations are independent, their joint probability is

k

P(ylo) = TT POxl6)

1For discrete observations, e.g., whole-numbers of milliseconds.



Likelihood

It's common to treat @ as fixed and P(y|f) as a function of y.

Let's instead treat y as fixed, and treat # as the varying argument.

This is called the likelihood function.

L&F use the notation L(f|y).

If we want to turn this into a discrepancy function, a common
choice is the negative log-likelihood: — log(L(f]y)).



Notation

We're using simplified notation, omitting what should be clear
from context, e.g., P(yx) rather than P(Y) = yx).
P(y|0): Probability mass function for y conditional on 6.

f(y|@): Probability density function?® for y conditional on 6.
Sometimes denoted with p(y|f) (notice the lowercase).

L(f]y): Likelihood function, interpreting either of the above as a
unary function of §. Not the same as P(f|y) or P~1(y|6)!

(Also important to know: cumulative density function and
cumulative mass function).

2For continuous variables; see L&W and Goldwater's notes.
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Example: Reaction Times

Probability Density

The exponential Gaussian function captures latencies (reaction
times) from a choice experiment.
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The ex-Gaussian has the following parameters: u, o, and 7. Let's
only consider y for now.



Example: Reaction Times

For a single data point y and the parameter p, we get the

following probability density function f(_y\,u):
R T s (1| 12)
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t (Parameter, in seconds )
“l ’ ) v (Data, in seconds)

The gray line marks f(y|u = 2), the black one L(uly = 3).
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Example: Reaction Times

Typically, we have collected some data, and want to estimate the
parameters of our model. The likelihood function L(u]y) tells us
how probable a parameter value is given this data.

If we just plot f(y|u =2) and L(uly = 3), we get:
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Example: Recall Scores

Distribution over recalled items (N correct) in a memory experiment.
Parameter: probability of recalling a single item, Pcoprect-

correct )
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Black line: f(N correct|Pcorrect = 0.7); ribbons: L(Peorrect| N correct).
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Maximum Likelihood Estimate

Idea behind maximum likelihood estimation: determine parameter
values such that they maximize the likelihood of the data.

The maximum likelihood estimate (MLE) @ of a parameter 0 is:

0 = argmax L(0]y)
0

This is not the same as maximizing the probability of the
parameter given the data:

P(y|0)P(0)
P(y)

This is the maximum a posteriori estimate to which we return in
when we discuss Bayesian estimation.

0 = argmax P(f]y) = arg max
0 0
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Defining a Likelihood Function

We first need to specify a function f(y|f) that maps data values
(outcomes of an experiment) onto probabilities.

Sometimes, the probability density function can be specified
directly, e.g., the ex-Gaussian function for reaction times:

1 — o? — o
f(yk’/'b70'77—):;exp <:U’ Tyk+>¢(yk Iu_)

272 o T

where © is the Gaussian cumulative distribution.

We assume that there are two components that generate reaction
times: time to make a decision (exponential) and time for encoding
and motor movement (Gaussian).

However, sometimes we additionally need a data model to relate
data values to model probabilities.
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The SIMPLE Model of Serial Recall

The SIMPLE model (Brown, Neath, & Chater, 2007) predicts
serial recall, i.e., the accuracy of recalling an item at a certain
position in a list.

Assumptions:
» distinctiveness (i.e., the extent to which an items differs from
other items) determines accuracy of recall;

> the distinctiveness criterion is time: during recall, we select
the target items among items that occurred at around the
same time;

» time is logarithmic, i.e., items that occurred longer ago are
harder to distinguish.
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The SIMPLE Model of Serial Recall

Let T, be the time of retrieval, and T; and T; the times associated
with items / and j. The psychological distance in time is then given
by M; = log(T, — T;) and M; = log(T, — T;).

The similarity of two items is then given by:
nij = exp(—c[M; — Mj|)

where c is a scaling parameter. Then the probability of recalling
item j given a probe i is:

L Nij
P(j|i) = ijn'k

where k ranges over all candidates. Note this is like the GCM, but
using temporal similarity instead of feature similarity.
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The SIMPLE Model of Serial Recall

If we set j = i, we get the probability of correctly recalling an item:

1
z:k7Wk

P correct(i ) =

function pcor = SIMPLEserial(c, presTime, recTime, J)

pcor = zeros(1,J);
Ti = cumsum(repmat (presTime,1,J));
Tr = Ti(end) + cumsum(repmat(recTime,1,J));

for i=1:J % i indexes output + probe position
M = log(Tr(i)-Ti);
eta = exp(-c*abs(M(i)-M));
pcor(i) = 1./sum(eta);

end
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The Data Model

SIMPLE predicts a probability of correct recall for each serial
position, but it doesn’t predict a probability distribution.

In an experiment, the observed proportion correct varies from trial
to trial because of sampling variability.

We can use the binomial distribution to model this:
n _
b(x|0,n) = ( >9X(1 —6)"x
X
Assuming Nc(i) correct recalls out of n trials, we get:

. . n i —Nc(i
P(NC(I)|PCorrect(l)7 n) = (Nc(l)> Pé\(ljflgegt(l - PCOffeCf)n Ne (i)
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The Data Model

Distribution predicted by SIMPLE with binomial data model for Peyrect = 0.7:
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The Data Model

Implementation of SIMPLE with data model:

function pmf = SIMPLEserialBinoPMF(c, presTime, recTime, J, Nc, N)
% c is the parameter of SIMPLE

% presTime and recTime are the effective temporal

% separation of items at input and output

% J is the length of the list

% Nc (a vector) is no. of items correctly recalled at each pos.

% N is the number of trials at each position

pmf = zeros(1,J);
Ti = cumsum(repmat (presTime,1,J));
Tr = Ti(end) + cumsum(repmat(recTime,1,J));
for i=1:J 7, i indexes output + probe position
M = log(Tr(i)-Ti);
eta = exp(-c*abs(M(i)-M));
pcor = 1./sum(eta);
pnf (i) = binomPMF(Nc(i), N, pcor);
end



The Data Model

If the model doesn't predict a distribution, we use a data model:

model parameters

Model
(e.g., ex-Gaussian)

predicted
probability mass function
or
probability dtin sity function

model parameters

Model
(e.g., SIMPLE)

predicted probability
(or other intermediate values)

L

Data model

predicted
probability mass function
or
probability dtinsity function

experimental details
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The Data Model

We need to be careful to distinguish the following different
probabilities:

» the probability Pcorrect(i) of correct recall predicted by
SIMPLE:;
Nc

» the probability of correct recall in the data, s
» the probability of each outcome N¢ predicted by SIMPLE

after applying the data model.

We can extend the data model to accommodate multiple outcomes
(not just correct/incorrect, but type of error), see L&F, ch. 4.3.4.



Summary

» The likelihood of a model L(fA|y) is the probability of the data
given the parameters, where we keep the data fixed;

» maximum likelihood estimation computes arg maxg L(6]y),
i.e., the parameters that maximize model likelihood;

» the SIMPLE model of memory recall assumes that temporal
determines accuracy of recall;

> sometimes we need a data model to predict a probability
distribution from the output of our model.
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