
Computational Cognitive Science
Lecture 3: Parameter Estimation

Chris Lucas

School of Informatics

University of Edinburgh

September 24, 2019

Reading

Reading: Chapter 3 of F&L

(don’t worry about bootstrapping or exact details of simplex
algorithm)

Introduction

Most models have free parameters.

Example:

Decision threshold or criterion in the random-walk decision
model

Introduction

Example:

Coefficients in a linear regression model

E.g., b0 and b1 in

y = b0 + b1x

Introduction

Example:

ε in “ε-greedy” models: The probability that someone chooses
a random option over the best so far.

To model trade-offs between exploration and exploration, like
choosing between restaurants or foraging spots.

Introduction

Example:

Weights in a neural network

GPT2 (a language generation model) has > 8 billion parameters.

Also, “hyperparameters”, e.g., learning rate, architectural decisions.

Why estimate parameters?

Usually necessary for precise and accurate predictions.

A model with free parameters → a family or space of models.
Sometimes we want to choose between model families – we can
estimate parameters to pick a best representative of that family.
Sometimes we want to identify better models within a family,
e.g.,

b0 + b2x2

in

b0 + b1x + b2x2 + b3x3

Why estimate parameters?

Some parameters are interpretable: They describe or explain
behavior in a way that people can understand

Random-walk model: Threshold, drift rate, standard deviation
ε in ε-greedy: How conservative are people?

(Estimated parameters might tell us about people in general,
individuals, or both)

Parameter Estimation

The aim of parameter estimation is to find the parameter values that
minimize loss (or error), according to some discrepancy function.

If our goal is to have an accurate predictive model, we want to
minimize predictive error.
If our goal is to interpret parameters, we want the most likely
or plausible values.

These goals often go hand in hand. Today we’ll focus on the first.

Quantifying error

A popular loss1 function function is root mean squared deviation:

RMSD =

√∑J
j=1(dj − pj)2

J

where

J is the number of data points
pj (or ŷj) is the j th prediction
dj (or yj) is the j th data point

Minimizing RMSD is equivalent to minimizing the sum squared error
or the mean squared error; RMSD is easier to interpret.

1or “discrepancy” or “error”. Can also call it RMSE.

Quantifying error

RMSD has some appealing/intuitive features:

Larger errors are worse than small errors
Often easy to minimize
Min RMSD → max likelihood in some cases

Quantifying error

Alternatives to RMSD:

Mean absolute error: 1
J

∑J
j=1 |dj − pj |

0/1 error: Can be useful in specific situations (e.g., roulette)
R2 (and adjusted R2): Not scale-dependent (good) but blind
to systematic bias (bad?)

Sometimes goal-appropriate loss functions are important, e.g., - It’s
better to deploy a parachute too early than too late. - Medical
diagnosis: Low-cost, low-precision tests can be useful.

Quantifying error: Discrete variables

Most loss functions for continuous variables aren’t applicable to
discrete variables (e.g., forced-choice judgments).

In psychological research, one popular discrepancy function for
discrete variables is χ2:

χ2 =
J∑

j=1

(Oj − Npj)2

Npj

where

J is the number of response categories
N is the total number of responses
Oj is the observed number of responses in category j
pj is the predicted probability for response j

Quantifying error: Discrete variables

Another common choice is G2:

G2 = 2
J∑

j=1
Oj log(Oj

Npj
)

These are popular in part because they are used in null hypothesis
significance tests – we can quantify “badness of fit” of a model.

In both cases, zero indicates a perfect fit.

Quantifying error: Discrete variables

Issues:

Not that easy to interpret
Require not just predictions, but probabilities – what happens if
a predicted probability is zero?

Also:

Accuracy – proportion of correct predictions – is an simple,
intuitive, and complementary measure.

Quantifying error: Binary variables

Many discrete loss functions focus on binary tasks, e.g., “y = 1 iff x
is in the target category, else y = 0”. We have:

true positives (ŷi = 1, yi = 1)
false positives (ŷi = 1, yi = 0)
true negatives (ŷi = 0, yi = 0)
false negatives (ŷi = 0, yi = 1)

Quantifying error: Binary variables

We can use these to express several measures of goodness of fit:

precision: TP/(TP + FP) – useful, but easy to game
recall: TP/(TP + FN) – useful, but easy to game
F1-score: F1 = 2 precision·recall

precision+recall
the harmonic mean of precision and recall; requires good
performance in both

Example: Linear Regression

Linear Regression

Let’s assume a simple model that describes a set of data points
(xi , yi) as follows:

yi = b0 + b1xi + ei

i.e.,

y = Xb + e

This equation describes linear regression. Here, b0 and b1 (intercept
and slope) are the parameters of the model, and ei is an error term
– often assumed to be Gaussian.

How do we estimate these parameters?

How to minimize a loss function?

Suppose we want to minimize predictive RMSD.

A proxy: Minimize RMSD for the data we have.

Some approaches:

Analytic solution
β̂ = (XT X)−1XT y

“try them all” – look at a dense grid of possible parameters
search selectively for an optimum

Optimization is covered in depth in other courses, e.g., MLP2.

2For a relevant reading, see
http://www.deeplearningbook.org/contents/optimization.html

Parameter Estimation: Analytic solutions

Often the best approach, where available.
Usually not available.

Parameter Estimation: Gridded search

Parameter Estimation: Gridded search

Pros:

Easy to see how error changes as a function of 1-2 parameters.
Easy to implement.
No issues with local optima.

Issues with G2:

Intractable for large parameter spaces or computationally
expensive problems.

5 parameters, 20 values per, 0.1 seconds to compute: 89 hours.
Doesn’t find actual optimum.
Bounds of grid aren’t always known in advance.

If tractable, worth doing; complementary to other approaches.

Parameter Estimation: Sequential search / gradient
descent

1 Determine a starting value for the parameters (randomly or
through an educated guess)

2 Propose an adjustment to the parameters; use this adjustment
if it reduces error

3 Iterate until no further error reduction is possible

Having gradients (i.e., how error changes locally as a function of
parameters) can make this very efficient.

Parameter Estimation: Sequential search / gradient
descent

See text for an example: the Nelder-Mead optimization algorithm.

This algorithm is simple and popular, but has some disadvantages:

Deals poorly with high-dimensional problems
Deals poorly with stochastic loss functions (e.g.,
simulation-based models)
Deals poorly with constrains on variables
Can’t deal with non-continuous variables
Not very good at dealing with local optima

Pitfall: Local optima

Most efficient methods for optimizing non-trivial functions only
guarantee finding local optima.

These may not be the same as the global optimum.

Pitfall: Local optima

There is no magic solution to the problem of local optima.

Many methods exist to mitigate it. See the text for a discussion of
one of these: simulated annealing .

Pitfall: Overfitting and predictive accuracy

We care about predictive error, not post-hoc error on our old data.
The latter is not always a good proxy for the former.

Pitfall: Overfitting and predictive accuracy

Pitfall: Overfitting and predictive accuracy

How do we find parameters that maximize predictive accuracy?

If data set is extremely large and representative, fits can be a
reasonable proxy.

This is rarely true for experimental data.

We can use prior knowledge, e.g., in regression:
parameters in a regression model are likely to be close to zero.
most features are likely to be irrelevant.

“regularized” or “penalized” models, e.g., minimize
RMSD + f (b).

Other tricks: “drop-out”, early stopping, . . .

Pitfall: Overfitting and predictive accuracy

How do we assess the predictive accuracy of a model?

Predict! Set aside representative data, one test once model is
final.

Failing that, there are some approximations, e.g., penalties for
model complexity.

Doing this well is imporant for model selection – discussed in a
future lecture.

Discrepancy functions and fitting: What are the data?

We’ve been assuming we know what our data are. Do we?

Consider the reaction-time experiment:

Are all participants the same, e.g., same threshold for evidence?
Is it realistic to predict the accuracy and reaction time for every
judgment?
What if we take averages per condition as our data?

This is common in psychological research.
Is is safe to do? Not always.
Later: Data aggregation

Summary

Cognitive models often have parameters that need to be
estimated
These are optimized relative to a discrepancy or loss function

RMSD is a popular choice, but loss function should be carefully
considered

Many optimization methods exist
Analytic
Exhaustive/gridded
Sequential; see text for discussion of the Nelder-Mead algorithm

Beware local optima. Simulated annealing is one way escape
them
Post-hoc error not always a good indicator of predictive error

