Inf3 Computer Architecture Practical 1 — Pipelining

Computer Architecture Practical 1 — Pipelining

Issued: Monday 28 January 2008
Due: Friday 15 February 2008 at 4.30pm (at the ITO)

This is the first of two practicals for the Computer Architecture module of CS3. Together
the practicals make up for 25% of the final mark for the module. This practical consists of
pen-and-paper exercises. Assessment of this practical will be based on the correctness and the
clarity of the solution. This practical is to be solved individually to assess your competence on
the subject. Please bear in mind the School of Informatics guidelines on plagiarism. You must
return your solutions to the ITO before the due date and time shown above.

Problem 1 — [10 Marks]

Use the following code fragment:

loop: L.D F4, 0(R2)
L.D F6, O0(R3)
MUL.D F8, F4,F0
MUL.D F10, F6,F2
ADD.D F12, F8,F10
DADDUI R2, R2,8
DADDUI R3, R3,8
DSUBU R5, R4,R2
BNEZ R5, 1loop

Assume that the initial value of R4 is R2+7992, that R2 and R3 contain the base addresses
of some arrays, and that FO and F2 contain some data values pre-loaded prior to the loop.
For this exercise assume the standard five-stage integer pipeline and the MIPS FP pipeline
as described in the lectures. Assume the latencies and initiation intervals shown in the table
below. If structural hazards are due to write-back contention, assume the earliest instruction
gets priority and other instructions are stalled.

‘ Functional unit ‘ Latency ‘ Initiation interval ‘

Integer ALU 0 1
Data memory 1 1
FP add 3 1
FP multiply 6 1
FP divide 24 24




Inf3 Computer Architecture Practical 1 — Pipelining

a. Show the timing of this instruction sequence for the MIPS FP pipeline without any for-
warding or bypassing hardware but assuming a register read and a write in the same clock cycle
”forwards” through the register file. Assume that the branch is handled by flushing the pipeline.
If all memory references hit in the cache, how many cycles does this loop take to execute?

b. Show the timing of this instruction sequence for the MIPS FP pipeline with normal forwarding
and bypassing hardware. Assume that the branch is handled by predicting it as not taken. If
all memory references hit in the cache, how many cycles does this loop take to execute?

Problem 2 — [10 Marks]

A machine is called "underpipelined” if additional levels of pipelining can be added without
changing the pipeline-stall behaviour appreciably. Suppose that the five-stage MIPS integer
pipeline was changed to four stages by merging EX and MEM and lengthening the clock cycle
by 50%. Assume that branches are resolved in the ID stage in both cases. How much faster would
the conventional MIPS pipeline be versus the underpipelined MIPS on integer code only? Make
sure you include the effect of any change in pipeline stalls assuming that, in the application mix
running on the five-stage pipeline, 4% of instructions stall due to branches and 5% of instructions
stall due to loads.

Problem 3 — [10 Marks]

Here is an unusual loop. First, list the dependences and then rewrite the loop so that it is
parallel.

for (i=1; i<100; i=i+1) {
ali] = bl[i] + c[il; /* S1 */
b[i] = alil + d[i]; /* 82 */
ali+1] = a[i] + e[i]l; /* S3 */

Problem 4 — [20 Marks]

Assume the pipeline latencies shown in the table below, and a one-cycle delayed branch. Unroll
the following loop a sufficient number of times to schedule it without any delays. Show the
schedule after eliminating any redundant overhead instructions. Despite the fact that the loop
is not parallel, it can be scheduled with no delays.

loop: L.D FO, O(R1)
L.D F4, 0(R2)
MUL.D FO, FO, F4



Inf3 Computer Architecture

ADD.D F2, FO, F2
DADDI R1, R1, -8
DADDI R2, R2, -8
BNEZ R1, loop

Practical 1 — Pipelining

‘ Instruction producing result ‘ Instruction using result ‘ Latency in clock cycles ‘

FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1
Load double Store double 0

Problem 5 — [30 Marks]

In this Exercise, we will look at how a common vector loop runs on a variety of pipelined versions
of the MIPS integer and FP pipelines. The loop is the so-called DAXPY loop (double-precision
aX plus Y) and is the central operation in Gaussian elimination. The following code implements
the DAXPY operation, Y = a * X + Y, for vector length 100:

loop: L.D F2, 0(R1)
MUL.D F4, F2, FO
L.D F6, 0(R2)
ADD.D F6, F4, F6
S.D 0(R2), F6
DADDUI R1, R1, 8
DADDUI R2, R2, 8
DSGTUI R3, R1, 800
BEQZ R3, loop

I

I

I

I

b

I

; load X(i)

; multiply a*xX(i)

; load Y(i)

; add axX(i) + Y(i)
; store Y(i)

increment X index
increment Y index
test if done

loop if not done

where DSGTUI is the instruction double set greater than unsigned integer, which sets the result
register to true if the value of the source register is greater than the unsigned immediate value.
For the questions below, assume that the integer operations issue and complete in one clock
cycle (including loads) and that their results are fully bypassed. Ignore the branch delay. Use
the FP latencies from Problem 4 in this Practical. Assume that the FP units are fully pipelined.

a. Assume the single-issue MIPS pipeline described above. Do not perform any re-ordering of
instructions. Show the number of stall cycles for each instruction and what clock cycle each
instruction begins execution on the first iteration of the loop. How many clock cycles does each

loop iteration take?



Inf3 Computer Architecture Practical 1 — Pipelining

b. Unroll the code to make four copies of the body and schedule it for the single-issue MIPS
pipeline described above. When unrolling and scheduling, you should optimise the code to
eliminate as many stalls as possible. How many clock cycles does each loop iteration take?

c. Consider the original (non-unrolled) DAXPY code. Assume a hardware with Tomasulos
algorithm with one integer unit, three FP adders, and two RP multipliers. Show the state of the
reservation stations and register-status tables (as in the slides of Lecture 7) when the DSGTUI
writes its result on the CDB. Do not include the branch.

d. Assume a superscalar architecture that can issue two independent operations in a clock cycle
(including two integer/load-store operations). Unroll the DAXPY code to make four copies of
the body and schedule it. Assume one fully pipelined copy of each functional unit (including
the integer unit). When unrolling and scheduling, you should optimise the code to eliminate as
many stalls as possible. How many clock cycles will each iteration take?

Problem 6 — [20 Marks]

Consider a predicated instruction set where all instructions have been augmented with predica-
tion. So, for instance, a predicated ADD would have the following syntax:

(p1) ADD R1,R2,R3

which would be executed to completion if pl is TRUE and would be discarded if p1 is FALSE.
Assume the RISC architecture is extended with 8 predicate registers (p1, ..., p8). Consider also
that a special compare instruction is used to set the predicate registers as follows:

CMP.EQ p1,p2=R1,R2

which would set pl to TRUE and p2 to FALSE if R1=R2, and pl to FALSE and P2 to
TRUE if R1!=R2. Consider the following code fragment:

DSUB R1, R13, R14
BNEZ R1, L1

DADDI R2, R2,1

SD 0(R7), R2

J L2

L1: MUL.D FO, FO, F2



Inf3 Computer Architecture Practical 1 — Pipelining

ADD.D FO, F4, FO
S.D 0(R8), FO

L2:

a. Using predicated instructions, write this code fragment as a single basic block. List all the
data and control dependences in the original code fragment and in your predicated version.

b. Assume the 5-stage MIPS integer pipeline and the FP MIPS pipeline with the latencies of
Problem 4. Branches and jumps are resolved in the ID stage and the (possibly) incorrectly
fetched instruction is discarded. Assume full bypassing is supported for both integer and FP
register operands. Further assume that predicated instructions obtain the values of the pred-
icated registers in the beginning of the ID stage (and stall if they are not yet available) and
are either allowed to continue or are turned into NOPs by the end of the ID stage. Finally,
assume that the compare instruction described above generates the predicate results at the end
of the ID stage (it only requires a simple comparator) and bypassing is supported for predicated
register operands from ID back to ID. Show the timing of the original instruction sequence and
your predicated version when each path is executed. What is the performance improvement (if
any) of the predicated version for each execution path?

Nigel Topham 2008



