
Assignment 2:
Understanding Data Cache Prefetching

Computer Architecture

Due: Thursday, March 22, 2018 at 4:00 PM

This assignment represents the second practical component of the Computer Archi-
tecture module. This practical contributes 12.5% of the overall mark for the module. It
consists of a programming exercise culminating in a written report. Assessment of this
assignment will be based on the correctness of the code and the clarity of the report as
explained below. The practical is to be solved individually. Please bear in mind the
School of Informatics guidelines on Academic Misconduct. You must submit your solu-
tion (code and a report) by the due date shown above. Follow the instructions provided
in Section 6 for submission details.

In this assignment, you are required to explore data cache prefetching techniques
using the Intel Pin simulation tool. You are strongly advised to commence working on
the simulator as soon as possible.

1 Overview

In this assignment you will evaluate the hit ratio of a data cache when different
hardware prefetch mechanisms are used. Towards this end, you will compare the following
data prefetch mechanisms:

1. Next-N-Line Prefetcher – provided to you

2. Stride Prefetcher – for you to implement

3. Distance Prefetcher – for you to implement

2 Prefetching

Cache prefetching is a technique that reduces cache miss rate by fetching data from
memory to a cache, ideally before the data has been demanded from the processor.

2.1 Sequential Prefetcher

The simplest hardware prefetcher is a Next-N-Line Prefetcher, which brings one or
several cache blocks adjacent to the one that was not found in a cache. If the next block(s)

1

are already in a cache, they are not prefetched. The number of next blocks to prefetch
(N) is called aggressiveness. The aggressiveness of the Next-N-Line Prefetcher can vary
across different implementations. The simplest Next-N-Line Prefetcher requests just the
next block (N=1). However, a more aggressive prefetcher can prefetch more next blocks.

2.2 Stride Prefetcher

Stride prefetching is a more advanced hardware prefetching technique, which is par-
ticularly beneficial for array traversals. A strided access with stride M means that every
Mth cache block is touched. Once a strided access pattern is detected, upon a load miss,
the prefetcher fetches one or more blocks according to the pattern. Similarly to the
Next-N-Line prefetcher, the number of blocks prefetched is called aggressiveness. If the
block(s) are already in the cache, they are not prefetched.

The difference between addresses referenced by the same load instruction when it
misses in the cache is called a stride. If a stride is the same for several consecutive misses
of a load instruction, then the load access pattern is detected, and prefetching is enabled
for this load instruction.

The information, required for detecting a strided access pattern is accumulated in a
Reference Prediction Table (RPT). RPT entries are indexed by the address (i.e. Program
Counter – PC) of a load instruction. An RPT entry contains:

• The PC of the load instruction, which acts as a tag.

• The previous address accessed by this load instruction on a cache miss.

• The stride for those entries which have established a pattern.

• A two-bit state.

The RPT structure is shown in Figure 1.

Load PC tag Previous access address Stride State

Load PC

+ Predicted
access address

Figure 1: RPT structure.

The state diagram for an RPT entry is given in Figure 2. The four states, captured
by the 2-bit state field, are:

• Initial: set on allocation of an entry in the RPT or after the entry experienced an
incorrect prediction from steady state.

2

• Transient: corresponds to the case when the system is not sure whether it should
prefetch or not.

• Steady: indicates that a pattern has been detected.

• No prediction: no pattern was detected for this entry.

An RPT entry is accessed when a load instruction experiences a cache miss. If an
entry corresponding to a load instruction address is not found in the RPT, a new entry
is allocated (after replacing an entry according to RPT replacement policy). The stride
field of a new entry is initialized to zero. The previous address of a new entry is initialized
to the memory access address. If there is a hit to RPT, the load address accessed by the
instruction is predicted to be

access addr = prev access addr + stride value

The prediction is correct if the predicted address matches the access address. Note that
the prediction is made only if an entry is found in the RPT. On a hit to the RPT,
the state of an entry is updated depending on the prediction’s correctness, according to
the state transition diagram shown in Figure 2. In addition, the previous address field
is updated with the memory access address. In all states except steady, in case of an
incorrect prediction, a stride field is updated with the last stride. If the prediction is
incorrect and the state is steady, the stride value remains unchanged. A prefetch occurs
only if the corresponding RPT entry is in the state steady and the prediction is correct.
In case of a prefetch, the previous address field is updated with the address of the last
prefetched block.

For more information on the Stride Prefetcher, see the original Chen and Baer’s
paper1.

Initial Steady

Transient
No

prediction

allocation of
an RPT entry correct

incorrect

correct

incorrect
(update stride) correct

incorrect
(update stride)

incorrect
(update stride)

correct

Figure 2: State transition diagram.

1Jean-Loup Baer and Tien-Fu Chen, “An effective on-chip preloading scheme to reduce data access
penalty”

3

2.3 Distance Prefetcher

The distance between two memory accesses is defined as the numerical difference
between two addresses. The Distance Prefetcher (DP) observes distances between pairs
of consecutive misses, stores sequences of the observed distances, and makes predictions
based on these sequences. For instance, after seeing a stream of global misses to addresses
10, 11, 13, 14, it observes that a distance of 1 (11 - 10) is followed by a distance of 2 (13
- 11), and that a distance of 2 is followed by a distance of 1 (14 - 13). Based on the first
observation, the last miss (i.e. on address 14) will trigger a prefetch for address 16. Note
that distances can take both positive and negative values.

As shown in Figure 3, the DP stores the following state:

• The previous miss address

• The previous distance

• An RPT with entries that consist of:

– A tag of the entry, indicating the distance to which the entry refers to

– A number of predicted distances that have been observed to follow the dis-
tance that the entry refers to. The number of the stored predicated distances
determines the aggressiveness of the DP.

Distance
Tag

Predicted
Distance 1

Predicted
Distance 2

Predicted
Distance 3

d1 d2 d3 d4

Prefetch
 Address 1

Prefetch
 Address 3

Prefetch
 Address 2

Previous Address

Missed Address

Distance

Previous
Distance

Figure 3: The Distance Prefetcher with aggressiveness equal to three

When the DP receives a new miss address, it compares it to the previous miss address
to calculate the distance. Then, it searches the RPT for an entry that corresponds to that
distance. If such an entry exists, then DP calculates the prefetch addresses by adding the
predicted distances to the miss address and issues prefetches for all calculated addresses.
Alternatively, if no entry corresponds to the distance, then an entry is allocated for
the distance; if no unused entry exists, then an entry is evicted according to the RPT
replacement policy.

The DP must be trained with the newly observed distance. As discussed, each entry
has a number of slots that contain the predicted distances. In order to train the DP,
the newly observed distance must be added as a predicted distance to the RPT entry
that refers to the previous distance; if that entry has all of its predicted distances filled,
then one of the predicted distances must be evicted to make way for the new distance.

4

The policy that determines which slot of the entry should be evicted is called the entry
replacement policy. Finally, the previous distance and previous address state must be
updated with the newly observed distance and address, respectively.

Let’s examine the DP’s functionality through an example. Assume an RPT with
aggressiveness equal to 3, where there is an RPT entry with a distance tag equal to 2
and predicted distances 1, 3 and 6. The previous address field stores the address 23 and
the previous distance field stores distance 5. Then assume that the DP receives a miss to
address 25. Firstly, it will calculate a distance of 2 and will search the RPT for an entry
with tag equal to 2. When the entry is found, DP will compute the prefetch addresses
by adding the predicted distances to the miss address, and thus, it will issue prefetches
for addresses 26, 28 and 31. Then, DP will perform the training: it will locate the entry
with tag equal to 5, that refers to the previous distance and it will add the distance 2
to one of its predicted distances. If all the predicted address slots are in use, then one
of them will be evicted, subject to the entry replacement policy. Finally, the previous
address will be replaced with the address 25, and the previous distance will be replaced
with 2.

3 Simulator infrastructure

Pin is a dynamic binary instrumentation engine that enables the creation of dynamic
analysis tools (e.g. architectural simulators). Pin intercepts program execution and
provides an API that allows you to execute high-level C++ code in response to runtime
events like loads, stores, and branches. A Pin tool is a program which uses the API and
specifies what has to happen in response. In this assignment, you are given an example
Pin tool that intercepts data memory requests (loads and stores) and simulates a data
cache with a Next-N-Line prefetcher. You will extend this tool to simulate a Stride
Prefetcher and a Distance Prefetcher.

The directions below apply to DICE machines.
The Pin tool and the benchmark are available in a directory that can be accessed

through a DICE machine. Inside that directory there is a README text file that contains
guidelines on how to run the simulator with the benchmark.
To access the guidelines within the directory, type the following commands in the termi-
nal:

1. CAR ASSGN2 PATH=/afs/inf.ed.ac.uk/group/teaching/car/assignment2

2. cd $CAR ASSGN2 PATH

3. gedit README

The directory that contains the skeleton source code for a data cache (dcache for prefetcher.hpp)
and Next-N-Line prefetcher (prefetcher example.cpp) is further down that path, at:

$CAR ASSGN2 PATH/tools/pin-3.5-97503-gac534ca30-gcc-linux/source/tools/PrefetchExample/

When the Pin tool runs prefetcher example.cpp, it requires a benchmark program (along
with its arguments) to be given as the last command line argument. The Pin tool runs the
benchmark and while running it, passes all memory instructions to the simulated data cache.

5

A Next N-Line Prefetcher is implemented inside prefetcher example.cpp in a function called
prefetchNextNLines.

Once Pin exits, it will generate a set of statistics for the simulated data cache and prefetcher
in a file. The file’s name will be given as an argument. The default name is data. The cache
simulator, in the file prefetcher example.cpp, allows for 4 different command line arguments:

1. -pref type: Denotes which Prefetcher should be used; the choices are: none, distance,
stride and next n lines. For example, in order to enable the Distance Prefetcher, use this
command line argument -pref type distance

2. -aggr: Sets aggressiveness. For example, when using the Next N-Line Prefetcher, in order
to prefetch next line only, use this command line argument -aggr 1

3. -o: Sets the name of the output file to be generated. To generate an output file called
MyOutput.out, give this command line argument -o MyOutput.out

Note that in the given example implementation, trying to use the Distance or Stride
Prefetcher will have no impact on the simulation, as these Prefetchers are not implemented.
The provided code contains comments on how to use the arguments that are necessary for your
implementation (i.e. -pref type, -aggr). These arguments will be used when testing the sub-
mitted code, so they must be used as described. Although it is not required for the assignment,
there are also arguments available to change the dimensions of the data cache (-b for block size,
-a for associativity and -sets for the number of sets).

Inside the skeleton code directory2 there is a folder called benchmark that contains a sim-
ple micro-benchmark program, microBench.exe, along with its source code (in c++ and x86
assembly). The given micro-benchmark streams through several arrays, exhibiting a behaviour
that can be benefited by the Next-N-Line Prefetcher. The purpose of the micro-benchmark is
to act as an example of the kind of micro-benchmarks you can build to test your prefetchers.
Note that the micro-benchmark has been compiled with all optimizations disabled (i.e. with
-O0) to eliminate compiler interference. You are not required to submit your results with the
micro-benchmark (or any other benchmark); rather, the given micro-benchmark is meant to
serve as an example for you to use. The guidelines inside the README text file contain more
information about how exactly to run the prefetcher simulator and how to use the command
line arguments.

IMPORTANT: The skeleton code prefetcher example.cpp includes counters that you MUST
increment in your code. The counters are: prefetches, accesses and hits. The comments
inside the skeleton code describe the counters and the source code demonstrates when to incre-
ment them.

4 Prefetcher Parameters

Your task is to implement a Stride Prefetcher and a Distance Prefetcher. The skeleton
code, found in prefetcher example.cpp, includes comments and guidelines on how you can
use the existing classes and their member functions. As an example, a Next-N-Line Prefetcher
is already implemented. The parameters of the system are as follows:

• Data cache (provided - no changes need to be made):

– size: 512B

2$CAR ASSGN2 PATH/tools/pin-3.5-97503-gac534ca30-gcc-linux/source/tools/PrefetchExample/

6

– block size: 4 bytes

– associativity: 2

– replacement policy: LRU

– prefetched blocks are allocated to LRU position

• Stride Prefetcher:

– RPT size: 64 entries

– associativity: fully associative

– RPT replacement policy: random

• Distance Prefetcher:

– RPT size: 64 entries

– entry size: equal to the aggressiveness (i.e. each RPT entry has as many predicted
distances as specified by the command line argument “aggr”)

– associativity: fully associative

– RPT replacement policy: random

– entry replacement policy: random

5 Marking Scheme

Correctness (80 marks). Includes code functionality and quality for the Stride and Distance
Prefetchers.

Report (20 marks). You should write a report (max 1 page). In the report you should answer
the following questions:

• What are the advantages and disadvantages of the Next-N-Line prefetcher?

• What are the advantages and disadvantages of the Stride prefetcher?

• What are the advantages and disadvantages of the Distance prefetcher?

• Why and how, varying aggressiveness impacts (or not) the hit ratio?

• Which predictor would you choose and why?

Note: no graphs or measurements are required for the report.

6 Submission

Your submission should clearly indicate (in both the report and the code) which prefetching
techniques you have simulated completely and, in case you did not finish, which you have only
partially completed. Make sure all code written by you is well-commented to make it easy for
the markers to understand. Remember that your simulator will be compiled/executed on a
DICE machine, so you must ensure that it works on DICE.

7

Submit your source code, along with a soft copy of your report as follows, using the DICE
environment:

$ submit car cw2 prefetcher example.cpp report.pdf

7 Similarity Checking and Academic Misconduct

You must submit your own work. Any code that is not written by you must be clearly
identified and explained through comments at the top of your files. Failure to do so is plagiarism.
Note that you are required to take reasonable measures to protect your assessed work from
unauthorized access. Detailed guidelines on what constitutes plagiarism and other issues of
academic misconduct can be found at:

http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct

All submitted code is checked for similarity with other submissions using software tools such
as MOSS. These tools have been very effective in the past at finding similarities and are not
fooled by name changes and reordering of code blocks.

8 Reporting Problems

Send an email to Antonios.Katsarakis@ed.ac.uk and Vasilis.Gavrielatos@ed.ac.uk if you
have any issues regarding the assignment.

8

http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct

	Overview
	Prefetching
	Sequential Prefetcher
	Stride Prefetcher
	Distance Prefetcher

	Simulator infrastructure
	Prefetcher Parameters
	Marking Scheme
	Submission
	Similarity Checking and Academic Misconduct
	Reporting Problems

