
Assignment 1: Understanding Branch
Prediction

Computer Architecture

Due: Monday, February 19, 2018 at 4:00 PM

This assignment represents the first practical component of the Computer Architec-
ture module. This practical contributes 12.5% of the overall mark for the module. It
consists of a programming exercise culminating in a brief written report. Assessment
of this assignment will be based on the correctness of the code and the clarity of the
report as explained below. The practical is to be solved individually. Please bear in mind
the School of Informatics guidelines on Academic Misconduct. You must submit your
solutions before the due date shown above. Follow the instructions provided in Section 3
for submission details.

In this assignment, you are required to explore Branch Prediction techniques using
the Intel Pin simulation tool. You are strongly advised to commence working on the
simulator as soon as possible.

1 Overview

A branch predictor anticipates the outcome of a branch, before it is executed, to
improve the instruction flow in the pipeline. In this assignment you will investigate the
accuracy of various branch predictors. Towards this end, you have to implement three
different branch predictors, as follows:

1. Local Branch Predictor

2. Gshare Global Branch Predictor

3. Tournament Branch Predictor that combines 1 and 2

1.1 PIN tool

Pin is a dynamic binary instrumentation engine that enables the creation of dynamic
analysis tools (e.g. architectural simulators). Pin intercepts program execution and
provides an API that allows you to execute high-level C++ code in response to runtime
events like loads, stores, and branches. A Pin tool is a program which uses the API and
specifies what has to happen in response. In this assignment, you are given an example
Pin tool that intercepts branches and simulates an AlwaysTaken branch predictor. You
will extend this tool to simulate three other branch predictors.

1

The directions below apply to DICE machines. For marking purposes, the
testing of your code will be performed in a DICE machine. Therefore you are
strongly encouraged to develop your code on a DICE machine.

The Pin tool and the benchmarks are available in a directory that can be accessed
through a DICE machine. Inside that directory there is a README text file that contains
guidelines on how to run the simulator with the benchmarks.
To access the guidelines within the directory, type the following commands in the termi-
nal:

1. CAR ASSGN1 PATH=/afs/inf.ed.ac.uk/group/teaching/car/assignment1

2. cd $CAR ASSGN1 PATH

3. gedit README

The directory that contains the skeleton source code for the branch predictor
(branch predictor example.cpp) is further down that path, at:

$CAR ASSGN1 PATH/tools/pin-3.5-97503-gac534ca30-gcc-linux/source/tools/BPExample/

When the Pin tool runs branch predictor example.cpp, it requires a benchmark pro-
gram (along with its arguments) to be given as the last command line arguments. The
Pin tool runs the benchmark and while running it, passes all conditional branches to the
simulated branch predictor. The given predictor inside branch predictor example.cpp

is called AlwaysTakenBranchPredictor and predicts Taken for all of the branches.
Once Pin exits, it will generate a set of statistics for the simulated branch predictor

in a file BP stats.out.
The branch predictor simulator, in the file branch predictor example.cpp, allows

for 3 different command line arguments:

1. The kind of predictor to be simulated, which include: Always Taken (code pro-
vided), Local, Gshare, Tournament. The default predictor is Always Taken. To
run the Always Taken branch predictor, give this command line argument type:
-BP type always taken

2. The number of entries (default 1024) in the PHT (pattern history table) of the
Predictor. To run the simulator with 1024 PHT entries, give this command line
argument: -num BP entries 1024

3. The name of the output file (default BP stats.out) with "-o <filename>".
- For example to generate an output file called MyOutput.out, give this command
line argument type: -o MyOutput.out

In the path $CAR ASSGN1 PATH/benchmarks there are 3 different benchmark programs
(Gromacs, Gobmk, Sjeng) from the SPEC2000 benchmark suite. You must run your
experiments with all 3 benchmarks, for the 3 requested predictors, with 3 different PHT
sizes. In total, you will run 27 different experiments.

The guidelines inside the README text file contain more information about how ex-
actly to run the branch predictor simulator and how to use the command line arguments.

2

1.2 Branch Predictor Parameters

The experiments must be run with the following three different sizes for the Pattern
History Tables (PHTs): 128, 1024, and 4096 entries. Note that you must assess all three
PHT sizes for each of the different branch predictors.

Each PHT entry is logically comprised of 2-bit saturating counters as explained in the
lecture slides. Remember that you are writing a simulator in a high-level language; you
are not designing actual circuits. As such, you may use any data types for the counters
(and other program variables). Regardless of the data type you use, it must behave like
a saturating 2-bit counter.

Local Branch predictor

• The Local Branch predictor uses per-branch history (i.e. history of each branch
considered independently) to make a prediction. The Predictor consists of two
structures:
1) An array of 128 distinct Local History Registers (LHRs), that store the branch
history of different branches;
2) The PHT.

The 7 Least Significant Bits (LSBs) of the Program Counter (PC) of the branch
instruction are used to index into the array with the LHRs and select the relevant
LHR to be used for the prediction. Each LHR is composed of as many bits as
necessary to index the PHT. For example, if the PHT contains 1024 entries, then
each LHR should be 10 bits long. Each n-bit LHR contains the n last outcomes
of all branches that map to that LHR (i.e. all branch PCs whose 7 LSBs are
identical), with 0 denoting not taken and 1 denoting taken. All LHRs should be
initialized to 0. The number of LHRs must be 128 and must stay constant across
all experiments(i.e. 128 LHRs is a fixed parameter, independent of PHT size).

• The selected LHR is used to index into the PHT, which yields the prediction. All
PHT entries must be initialized to “11” (i.e. 3).

• To train the predictor after each prediction, the relevant LHR must be updated
such that it reflects the new history and the used PHT entry must be strengthened
in case of a correct prediction and weakened in case of misprediction.

- To strengthen a saturating counter means to increment it if its prediction bit
is ‘1’, and decrement it if the prediction bit is ‘0’.

- To weaken a saturating counter means to decrement it if its prediction bit is
‘1’, and increment it if the prediction bit is ‘0’.

• Figure 1 shows a pictorial view of the Local Branch Predictor, with 128 distinct
LHRs, each of which consists of 12 bits of branch history, that is used to index into
a 4096-entry PHT of 2-bit saturating counters. Students are referred to [1] (Section
4) for more information.

3

12-bit Local History

Local History
Registers

0

127

PHT
0

4095

10

PC
7 LSBs

Predict
Taken

Figure 1: A Local Branch predictor with 128 Local History Registers and a PHT with
4096 2-bit saturating counters

Gshare Branch Predictor

• The Gshare Branch predictor combines a Global History Register (GHR) and the
LSBs of the branch’s PC to index into the PHT. The PC and the GHR are XORed
in order to create the index to the PHT.

• The Global History Register is composed of as many bits as necessary to index
the PHT. For example, if the PHT contains 1024 entries, then the GHR should be
10 bits long. These 10 bits contain the outcomes of the last 10 branches, with 0
denoting not taken and 1 denoting taken. GHR should be initialized to 0. All PHT
entries must be initialized to “11” (i.e. 3).

• To train the predictor after each prediction, the GHR must be updated such that
it reflects the new global history and the used PHT entry must be strengthened in
case of a correct prediction and weakened in case of misprediction.

• Figure 2 shows a pictorial view of the Gshare Branch Predictor with a GHR of 10
bits that gets XORed with the 10 least-significant bits of the PC of the branch in
order to index into the PHT that contains 1024 entries of 2-bit saturating counters.
Students are referred to [1] (Section 7) for more information. For the purpose of
this assignment, the number of LSBs used from the branch PC should be equal to
the number of bits of the GHR.

PHT
0

1023

01

PC
10 LSBs

Predict
Not Taken

10-bit Global History

Global History
Register

XOR

Figure 2: Gshare Branch predictor with a 10-bit GHR and a 1024-entry PHT

Tournament Branch Predictor

• The Tournament predictor is composed of three different predictors: the Local
predictor, the Gshare predictor, and a meta-predictor that selects between the Local

4

or the Gshare predictor to provide the actual prediction of the branch outcome.

• The PHT of the meta-predictor is indexed with the LSBs of the Program Counter
(PC) of the branch instruction.

• In the meta-predictor, when the prediction bit (i.e. the MSB) of the saturating
counter is 0, the Local predictor is selected to supply the prediction. When the
MSB is 1, the Gshare predictor is selected. All PHT entries must be initialized to
“11” (i.e. 3).

• The Tournament predictor will follow a total update policy. Both the Local and
the Gshare predictors will be trained after each branch is resolved. After a correct
prediction the relevant meta-predictor entry must be strengthened. After a mis-
prediction, the relevant meta-predictor entry (the counter) must be weakened only
if the predictor that was not chosen was correct. If both the Local and the Gshare
predictors were incorrect, there is no update to the meta-predictor.

• Since the underlying behavior of the Local and Gshare predictors is unmodified in
the Tournament scheme, you may choose to use your existing implementations of
Local and Gshare predictors to implement the Tournament predictor.

• Figure 3 shows a pictorial view of the Tournament Branch Predictor with a PHT
that contains 1024 entries of 2-bit saturating counters. The 2-bit saturating counter
indicates which predictor should be used (Local or Gshare) for the branch given its
PC.

• As before, the experiments must be run with PHTs of 3 different sizes (128, 1024
and 4096 entries). In each experiment the PHTs of the Local Predictor and the
Gshare Predictor must all have the same size. I.e. when the meta-predictor PHT
is 1024 entries, then the Gshare PHT is also 1024 entries and the Local Predictor
PHT is also 1024 entries.

PHT
0

1023

01

PC
10 LSBs

Use Local
Predictor

Local
Predictor

Gshare
Predictor

Final
prediction

Figure 3: Tournament Branch predictor with a a 1024-entry PHT

1.3 Simulator infrastructure

The three requested predictors must all be implemented inside the branch predictor

example.cpp file. Inside the file, you must create a class with an appropriate name
for each predictor. The file branch predictor example.cpp includes comments and

5

guidelines on how you must create your classes and the appropriate member functions.
To help you get started, an implementation of the Always Taken predictor is supplied.
You should start with the same code as the one for the Always Taken predictor and
modify it to implement new functionality for each specific predictor type.

For the purpose of this assignment you can ignore the Branch Target Buffer(BTB)
(i.e. the implementation of a BTB is not needed): the simulated predictors must only
generate a prediction without specifying the target address of the branch. Additionally
the predictors do not need to identify whether an instruction is a conditional branch;
they can assume that every instruction is a conditional branch, because the given code
feeds only conditional branches into the prediction functions.

The contents of the file branch predictor example.cpp should be modified
only as the above guidelines specify, and not in any other way.

2 Marking Scheme

Correctness (80 marks). Includes code functionality and quality for the following 3
predictors:

1. Local Branch Predictor (30 marks)

2. Gshare Global Branch Predictor (30 marks)

3. Tournament Branch Predictor (20 marks)

Report (20 marks). You should write a short report (max 2 pages) on how you have
implemented each predictor and where the predictor code is (source file, line numbers).
In the report you should answer the following questions. Please refrain from using more
than 3 to 4 lines for each question.

• Why and how, varying the size of the PHT impacts (or not) the prediction accuracy
for each of the predictors?

• What are the advantages and disadvantages of the Local predictor?

• What are the advantages and disadvantages of the Gshare predictor?

• What benefits did you expect from the addition of the Tournament predictor? Did
the results match your expectations?

Finally your report must contain 3 graphs (one for each benchmark) summarizing
your results by showing the prediction accuracy of all three predictors for the various
PHTs. The x axis should denote the PHT size and the y axis the prediction accuracy as
a percentage. In each of the graphs the performance of all 3 predictors must be plotted.
A sample chart is shown in figure 4.

6

Figure 4: A sample of the chart that must be submitted in the Report. One such chart
must exist in the report for each benchmark.

3 Format of your submission

Your submission should clearly indicate (in both the report and the code) which
branch prediction techniques you have simulated completely and which you have only
partially completed (if any). Please put comments in the code that you add to make it
easy for the markers to understand. Remember that your simulator will be compiled/ex-
ecuted on a DICE machine, so you must ensure it works on DICE. Submit an archive of
your Branch Predictors source code and a soft copy of your report as follows, using the
DICE environment:
$ submit car cw1 branchPredictors.tar.gz report.pdf

4 Similarity Checking and Academic Misconduct

You must submit your own work. Any code that is not written by you must be
clearly identified and explained through comments at the top of your files. Failure to
do so is plagiarism. Note that you are required to take reasonable measures to protect
your assessed work from unauthorized access. Detailed guidelines on what constitutes
plagiarism and other issues of academic misconduct can be found at:

http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct

All submitted code is checked for similarity with other submissions using software tools
such as MOSS. These tools have been very effective in the past at finding similarities and
are not fooled by name changes and reordering of code blocks.

5 Reporting Problems

Send an email to Antonios.Katsarakis@ed.ac.uk and Vasilis.Gavrielatos@ed.ac.uk if
you have any issues regarding the assignment.

7

http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct

References

[1] S. Mcfarling. Combining branch predictors. Technical report, 1993.

8

	Overview
	PIN tool
	Branch Predictor Parameters
	Simulator infrastructure

	Marking Scheme
	Format of your submission
	Similarity Checking and Academic Misconduct
	Reporting Problems

