
Announcements

UG4 Honours project selection:

Talk to Vijay or Boris if interested in computer
architecture projects

Inf3 Computer Architecture - 2017 -2018 1

Last time: Tomasulo’s Algorithm

Inf3 Computer Architecture - 2017-2018 2

Last time: Summary of TomasuloÕs

Advantages

! Register renaming :
Ð No need to wait on WAR and WAW (not true dependencies)
Ð Can have many more reservation stations than registers

! Parallel release of all dependent instructions as soon as the

earlier instructions completes
Ð Common Data Bus (CDB) is a forward mechanism

Limitations

! Branches stall execution of later instructions until branch is

resolved
Ð This effectively limits reorder window to the current basic block (4 -6 insts)

! Extending TomasuloÕs beyond just floating point operations

introduces the risk of imprecise exceptions

Inf3 Computer Architecture - 2017 -2018 3

Inf3 Computer Architecture - 2017 -2018 4

Multiple -Issue Processors: Motivation

! Ideal processor: CPI of 1

Ð no hazards, 1 -cycle memory latency

! Realistic processor: CPI ~1

Ð Dynamic scheduling Ðavoids WAR & WAW dependencies

Ð Branch prediction Ðavoids control flow dependencies

Ð Caches Ðminimize AMAT

! Question: can we do better than that???

Inf3 Computer Architecture - 2017-2018 5

Multiple-Issue Processors

§ Answer: Yes!
– start more than one instruction in the same clock cycle
– CPI < 1 (or IPC > 1, Instructions per Cycle)

§ Two approaches:
– Superscalar: instructions are chosen dynamically by the

hardware
– VLIW (Very Long Instruction Word): instructions are chosen

statically by the compiler (and assembled in a single long
“instruction”)

Inf3 Computer Architecture - 2017-2018 6

Superscalar Processors

! Hardware attempts to issue up to n instructions on every cycle,
where n is the issue width of the processor and the processor is
said to have n issue slots and to be a n-wide processor

! Instructions issued must respect data dependences

! In some cycles not all issue slots can be used

! Extra hardware is needed to detect more combinations of
dependences and hazards and to provide more bypasses

! Branches?
– With branch prediction, we can predict branches and fetch

instructions

– Can we execute such predicted instructions?

Speculative Execution

§ Speculative execution – execute control-dependent
instructions even when we are not sure if they
should be executed

§ Hardware undo, in case of a misprediction
– Software recovery too costly, performance-wise

§ Key Idea: Execute out-of-order but commit in order
– Commit: the results and side-effects (e.g., flags,

exceptions) of an instruction are made visible to the rest
of the system

§ Tomasulo + multi-issue + speculation
– Foundation for today’s high-performance processors

Inf3 Computer Architecture - 2017-2018 7

Extending Tomasulo to Support Speculation

! Approach: buffer result until instruction ready to
commit (i.e., known to be non -speculative)
Ð Use buffered result for forwarding to dependent

instructions

Ð Discard buffered result if the instruction is on a mis-
speculated execution path

Ð At commit, write buffered result to register or memory

! Decouples execution (potentially speculative) from
update of architecturally -visible state (non -
speculative)
Ð Architecturally -visible state: registers (R0 -Rn, F0-Fn,

memory, etc.)

Inf3 Computer Architecture - 2017 -2018 8

Enabling Speculation with the Reorder Buffer

New structure: Reorder Buffer (ROB)

§ Holds completed results until commit time

§ Organized as a queue ordered by program (i.e., fetch) order

§ Takes over the role of the reservation stations for tracking

dependencies and bypassing values
Ð Accessed by dependent instructions for forwarding of completed, but

not -yet -committed, results

Ð Reservation stations still needed to hold issued instructions until they
begin execution

§ Flushed once mis-speculation is discovered (mispredicted

branch commits)

§ Enables precise exceptions
Ð exception state recorded in ROB
Ð flushed if exception occurred on a mis-predicted path

Inf3 Computer Architecture - 2017 -2018 9

Precise Exceptions

! Precise Exceptions require that the architecturally -visible
state is consistent with sequential (one instruction at a
time) execution
Ð Architecturally -visible state: registers (R0 -Rn, F0-Fn) & memory
Ð Implication: all instructions before the excepting instruction are

committed and those after it can be restarted from scratch (i.e.,
have not modified architectural state).

! Speculation without support for precise exceptions can
have nasty consequences
Ð E.g., I/O on a misspeculated path
Ð E.g., program terminated after accessing memory it doesnÕt have

permissions to access, but does so on a misspeculated path

! Other benefits of precise exceptions:
Ð Software debugging, simple exception recovery, easy context

switching

Inf3 Computer Architecture - 2017 -2018 10

Enabling Speculation with the Reorder Buffer

Inf3 Computer Architecture - 2017 -2018 11

Instruction
Cache

Register
File Out-of-Order

Execution

Reorder
Buffer

! Instructions are fetched in order from the Instruction
Cache

! Instructions are executed out -of -order (with
TomasuloÕs)

! Instructions are committed in order (with the ROB)
! Enable precise exceptions and speculative execution

Inf3 Computer Architecture - 2017 -2018 13

Tomasulo with Hardware Speculation

! Issue:
Ð Get instruction from queue
Ð Issue if an RS is free and an ROB entry is

also free
Ð Stall if no RS or no free ROB entry
Ð Instructions now tagged with ROB entry

number, not RS.id

! Execute:
Ð Same as before: monitor CDB and start

instruction when operands are available

! Write Result:
Ð CDB broadcasts result with ROB identifier
Ð ROB captures result to commit later
Ð Store operations also saved in the ROB

until store data is available and store
instruction is committed

! Commit:
Ð If branch, check prediction and squash

following instructions if incorrect
Ð If store, send data and address to

memory unit and perform write action
Ð Else, update register with new value and

release ROB entry

!""#$%%&'()*

+,&-""$#% +,&.'/*)0/)$#%1$.2#3&'()*

!""#$%%&'()*

+#2.&)(%*#'4*)2(&5$*46&'()*

7(%*#'4*)2(
8'$'$

+,
#$9)%*$#%

:$;
<#"$#
='55$#

>2-"&?'55$#%

:$%$#@-*)2(
%*-*)2(%

A
B
C

D

E

F

AA

G
G
G

/"&5AH&DI#AJ

%*&5DH&KI#BJ

.'/&5CH&5AH&5B

-""&5DH&5EH&5C

In-order vs Out -of -order Superscalars Compared

Inf3 Computer Architecture - 2017 -2018 14

Intel SandyBridge
4-wide decode/issue
6-wide execute

Cavium MIPS core
2-wide in-order

Source: AnandTech

State -of -the -Art in Out -of -Order Superscalars

Intel Haswell (circa 2014 -15):
Ð Large Instruction Window: 192 entries

Ð Deep Load & Store buffers: 72 load, 42 store

Ð Deeper OoO scheduling window: 60 entries

Ð Execution ports: 8 (more execution resources for store
address calculation, branches and integer processing).

Inf3 Computer Architecture - 2017 -2018 15

Inf3 Computer Architecture - 2017 -2018 16

VLIW Processors

! Compiler chooses and ÒpacksÓ independent instructions
into a single long ÒinstructionÓ word or ÒbundleÓ

! Compiler responsible for avoiding hazards
Ð Keeps hardware simple
Ð CompilerÕs schedule must be conservative to guarantee safety

! Not all portions of the long instruction word will be used
in every cycle
Ð Compiler must be able to expose a lot of parallelism in the

schedule to attain good performance

! Example:

MEM op 1 MEM op 2 FP op 1 INT op

ld f18, - 32(r1) ld f22, - 40(r1) addd f4,f0,f2

FP op 2

addd f8,f6,f2

VLIW Processors (conÕd)

! Key challenge for VLIW processors:
Ð find control -independent work to fill each word

Ð Cover data -dependent stalls (e.g., F.DIV immediately
followed by a use of the result) with independent
instructions

! Solutions:
Ð Get rid of control flow

! Predication
! Loop unrolling

Ð Move code around to maximize scheduling opportunities
and minimize stalls

Inf3 Computer Architecture - 2017 -2018 17

Predication

! Idea: compiler converts control flow dependencies
into data dependencies
– In effect, branches are replaced with conditional

execution
! In practice, with conditional commit

! How?
– Instructions on both paths of the branch are executed

! Branch instructions are completely eliminated!
– Each instruction has a predicate bit that is set based on

the computation of the predicate
– Only instructions with TRUE predicates are committed

Inf3 Computer Architecture - 2017-2018 18

Predication

Inf3 Computer Architecture - 2017 -2018 19

if (cond)
b = 0;

else
b = 1;

x = b + 1;

Normal code
(branch-based control flow)

Predicated code

JOIN:

Predication Pros & Cons

! Advantages:
Ð avoid pipeline bubbles whenever there is a branch

Ð compiler can hide data hazards by scheduling
independent instructions

! Disadvantages:
Ð More instructions executed (bad for power)

Ð Potentially longer critical path than if only the correct
side of the branch was executed

Inf3 Computer Architecture - 2017 -2018 20

Loop Unrolling

! Idea: replicate loop body multiple times within
one iteration of the loop

! Advantages:
Ð Reduces loop maintenance overhead (induction variable

update, condition code computation, branch)

Ð Enlarges basic block size, thus maximizing scheduling
opportunities

! Basic block: a sequence of instructions with exactly one
entry point and exactly one exit point

! Drawback:
Ð Need extra code to detect & deal with cases when

unroll factor not multiple of iteration count
! In practice, this is a small price to pay

Inf3 Computer Architecture - 2017 -2018 21

Safety and legality of code motion

! Two characteristics of code motion:
Ð Safety: whether or not spurious exceptions may occur

Ð Legality: whether or not the result is guaranteed correct

Inf3 Computer Architecture - 2017 -2018 22

Safety and legality of code motion

! Two characteristics of code motion:
– Safety: whether or not spurious exceptions may occur
– Legality: whether or not the result is guaranteed correct

Inf3 Computer Architecture - 2017-2018 23

Multiflow and Trace Scheduling

Multiflow Computer: pioneered the VLIW design style
Ð Available in VLIW widths of 7, 14, and 28 ops/ inst

! Max width of 28 required a 1024 -bit word

Ð Introduced powerful compilation techniques, particularly
trace scheduling

! Trace scheduling fused multiple basic blocks on ÒhotÓ code
paths into regions called traces

! These traces created rich opportunities for code motion

24!"#$#%&'()"*$"&+ ,*-()&-. /"&01
/"&01(2#-.(

0*+)1%3&-#%$(0*41Inf3 Computer Architecture - 2017 -2018

Modern-day case study: TriMedia TM 1000

§ 5 issue slots, 28 functional units, 128 registers
§ Each inst within a word can be predicated

– Any one of 128 regs can serve as the predicate (LSB is used)
§ No dynamic hazard detection (compiler’s job)

– Except on cache misses, which will lock the pipeline
§ Non-excepting loads enable load speculation (no virtual mem)

Inf3 Computer Architecture - 2017-2018 25

Inf3 Computer Architecture - 2017-2018 26

Superscalar vs. VLIW Processors

SuperScalars
+ Able to handle dynamic events like cache misses, unpredictable memory

dependences, branches, etc.
+ Can exploit old binaries from previous implementations

- Complexity limits issue width to 4-8

VLIW
+ Much simpler hardware implementation
+ Implementations can have wider issue than superscalars

- Require more complex compiler support

- Cannot use old binaries when pipeline implementation changes

- Code size increases because of empty issue slots

Inf3 Computer Architecture - 2017 -2018 27

What are the practical Limitations to ILP?

! Limitations on max issue width and instruction window size

! Effects of realistic branch prediction

! The effect of limited numbers of rename registers

! Memory aliasing

! Variable memory latencies (because of caches)

150

119

75

18

63

55

0 50 100 150 200

tomcatv

doduc

fpppp

li

espresso

gcc

Instruction issues per cycle

!"#$%#&%'()*+($,(#(-'./'01(-.20'332.4(
5$16(,2,'(2/(16'(#&2"'(02,31.#$,137(

89(:+;<=>(&',06?#.@3(
816'(/$.31(A(#.'(),14(16'(%#31(A(#.'(B+

C6'3'(%'"'%3(2/()*+(#.'($?-233$&%'(12(
#06$'"'($,(-.#01$0'(DE'(12(%$?$1#1$2,3(
#&2"'

FG+(H16 'D 4(/$I(A7J(K-7JLMN(

Effect of Instruction Window (i.e., ROB)

Inf3 Computer Architecture - 2017 -2018 28

55
63

18

75

119

150

36
41

15

61 59 60

10
15 12

49

16

45

10 13 11

35

15

34

8 8 9
14

9
14

0

20

40

60

80

100

120

140

160

gcc espresso li fpppp doduc tomcatv

In
st

ru
ct

io
ns

 P
er

 C
lo

ck

Infinite 2048 512 128 32!"#$% &' () *$
+,-$./0$12/3456

Effect of Branch prediction (2K ROB)

Inf3 Computer Architecture - 2017-2018 30

35!

41!

16!

58!
60!

9!

12!
10!

48!

15!

46!

6!
7! 6!

46!

13!

45!

6.4! 6.3! 6.5!

45!

14!

45!

2! 1.8! 2.3!

28.5!

4.1!

18.6!

0!

10 !

20 !

30 !

40 !

50 !

60 !

!
gcc !

"espresso ! ��li! ��fpppp ! ��doducd ! ��tomcatv !

In
st

ru
ct

io
n

is
su

es
 p

er
 c

yc
le

!

Program !

Perfect ! Selective predictor ! Standard 2-bit ! Static ! None!
!"#$% &' () *$
+,-$./.$01/2345

Inf3 Computer Architecture - 2017 -2018 32

Limits to Multiple -issue

! Fundamental limits to ILP in most programs:
Ð Need N independent instructions to keep a W -issue processor busy,

where N = W * pipeline depth
Ð Data and control dependences significantly limit amount of ILP

! Complexity of the hardware based on issue width:
Ð Number of functional units increases linearly ! OK
Ð Number of ports for register file increases linearly ! bad
Ð Number of ports for memory increases linearly ! bad
Ð Number of dependence tests increases quadratically ! bad
Ð Bypass/forwarding logic and wires increases quadratically ! bad

These two tend to ultimately limit the width of
practical dynamically-scheduled superscalars

Inf3 Computer Architecture - 2017-2018 33

Summary of Factors Limiting ILP in Real Programs

! Compared with an ideal processor
– Limited instruction window
– Finite number of registers (introduces WAW and WAR stalls)
– Imperfect branch prediction (pipeline flushes)
– Limited issue width
– Instruction fetch delays (cache misses, across-block fetch)
– Imperfect memory disambiguation (conservative RAW stalls)

! Implications for future performance growth?
– Single processor has inherent limits
– To use future silicon area, need to go to multiple processors

Acknowledgement

These slides contain material developed by Onur
Mutlu (CMU) for his ECE 447 course.

Inf3 Computer Architecture - 2017 -2018 34

