
Announcements

UG4 Honours project selection: 

Talk to Vijay or Boris if interested in computer 
architecture projects

Inf3 Computer Architecture - 2017 -2018 1



Last time: Tomasulo’s Algorithm

Inf3 Computer Architecture - 2017-2018 2



Last time: Summary of TomasuloÕs

Advantages

! Register renaming :
Ð No need to wait on WAR and WAW (not true dependencies)
Ð Can have many more reservation stations than registers

! Parallel release of all dependent instructions as soon as the 

earlier instructions completes
Ð Common Data Bus (CDB ) is a forward mechanism

Limitations

! Branches stall execution of later instructions until branch is 

resolved
Ð This effectively limits reorder window to the current basic block (4 -6 insts )

! Extending TomasuloÕs beyond just floating point operations 

introduces the risk of imprecise exceptions
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Multiple -Issue Processors: Motivation 

! Ideal processor: CPI of 1

Ð no hazards, 1 -cycle memory latency 

! Realistic processor: CPI ~1

Ð Dynamic scheduling Ðavoids WAR & WAW dependencies

Ð Branch prediction Ðavoids control flow dependencies 

Ð Caches Ðminimize AMAT

! Question: can we do better than that???
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Multiple-Issue Processors 

§ Answer:  Yes!
– start more than one instruction in the same clock cycle 
– CPI < 1 (or IPC > 1, Instructions per Cycle)

§ Two approaches:
– Superscalar: instructions are chosen dynamically by the 

hardware
– VLIW (Very Long Instruction Word): instructions are chosen 

statically by the compiler (and assembled in a single long 
“instruction”)
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Superscalar Processors

! Hardware attempts to issue up to n instructions on every cycle, 
where n is the issue width of the processor and the processor is 
said to have n issue slots and to be a n-wide processor

! Instructions issued must respect data dependences

! In some cycles not all issue slots can be used

! Extra hardware is needed to detect more combinations of 
dependences and hazards and to provide more bypasses

! Branches?
– With branch prediction, we can predict branches and fetch 

instructions

– Can we execute such predicted instructions?



Speculative Execution

§ Speculative execution – execute control-dependent 
instructions even when we are not sure if they 
should be executed

§ Hardware undo, in case of a misprediction
– Software recovery too costly, performance-wise

§ Key Idea: Execute out-of-order but commit in order
– Commit: the results and side-effects (e.g., flags, 

exceptions) of an instruction are made visible to the rest 
of the system 

§ Tomasulo + multi-issue + speculation
– Foundation for today’s high-performance processors
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Extending Tomasulo to Support Speculation

! Approach: buffer result until instruction ready to 
commit (i.e., known to be non -speculative)
Ð Use buffered result for forwarding to dependent 

instructions

Ð Discard buffered result if the instruction is on a mis-
speculated execution path 

Ð At commit, write buffered result to register or memory

! Decouples execution (potentially speculative) from 
update of architecturally -visible state (non -
speculative)
Ð Architecturally -visible state: registers (R0 -Rn, F0-Fn, 

memory, etc.)
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Enabling Speculation with the Reorder Buffer

New structure: Reorder Buffer (ROB)

§ Holds completed results until commit time 

§ Organized as a queue ordered by program (i.e., fetch) order

§ Takes over the role of the reservation stations for tracking 

dependencies and bypassing values
Ð Accessed by dependent instructions for forwarding of completed, but 

not -yet -committed, results

Ð Reservation stations still needed to hold issued instructions until they 
begin execution

§ Flushed once mis-speculation is discovered ( mispredicted

branch commits)

§ Enables precise exceptions 
Ð exception state recorded in ROB
Ð flushed if exception occurred on a mis-predicted path
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Precise Exceptions

! Precise Exceptions require that the architecturally -visible 
state is consistent with sequential (one instruction at a 
time) execution
Ð Architecturally -visible state: registers (R0 -Rn, F0-Fn) & memory
Ð Implication: all instructions before the excepting instruction are 

committed and those after it can be restarted from scratch (i.e., 
have not modified architectural state).

! Speculation without support for precise exceptions can 
have nasty consequences
Ð E.g., I/O on a misspeculated path
Ð E.g., program terminated after accessing memory it doesnÕt have 

permissions to access, but does so on a misspeculated path

! Other benefits of precise exceptions:
Ð Software debugging, simple exception recovery, easy context 

switching
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Enabling Speculation with the Reorder Buffer
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Instruction
Cache

Register 
File Out-of-Order 

Execution 

Reorder
Buffer

! Instructions are fetched in order from the Instruction 
Cache

! Instructions are executed out -of -order (with 
TomasuloÕs)

! Instructions are committed in order (with the ROB)
! Enable precise exceptions and speculative execution
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Tomasulo with Hardware Speculation

! Issue:
Ð Get instruction from queue
Ð Issue if an RS is free and an ROB entry is 

also free
Ð Stall if no RS or no free ROB entry
Ð Instructions now tagged with ROB entry 

number, not RS.id

! Execute:
Ð Same as before: monitor CDB and start 

instruction when operands are available

! Write Result:
Ð CDB broadcasts result with ROB identifier
Ð ROB captures result to commit later
Ð Store operations also saved in the ROB 

until store data is available and store 
instruction is committed

! Commit:
Ð If branch, check prediction and squash 

following instructions if incorrect
Ð If store, send data and address to 

memory unit and perform write action
Ð Else, update register with new value and 

release ROB entry
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In-order vs Out -of -order Superscalars Compared
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Intel SandyBridge
4-wide decode/issue
6-wide execute

Cavium MIPS core
2-wide in-order

Source: AnandTech



State -of -the -Art in Out -of -Order Superscalars

Intel Haswell (circa 2014 -15):
Ð Large Instruction Window: 192 entries

Ð Deep Load & Store buffers: 72 load, 42 store

Ð Deeper OoO scheduling window: 60 entries

Ð Execution ports: 8 (more execution resources for store 
address calculation, branches and integer processing).
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VLIW Processors

! Compiler chooses and ÒpacksÓ independent instructions 
into a single long ÒinstructionÓ word or ÒbundleÓ

! Compiler responsible for avoiding hazards
Ð Keeps hardware simple
Ð CompilerÕs schedule must be conservative to guarantee safety

! Not all portions of the long instruction word will be used 
in every cycle
Ð Compiler must be able to expose a lot of parallelism in the 

schedule to attain good performance

! Example:

MEM op 1 MEM op 2 FP op 1 INT op

ld f18, - 32(r1) ld f22, - 40(r1) addd f4,f0,f2

FP op 2

addd f8,f6,f2



VLIW Processors ( conÕd)

! Key challenge for VLIW processors: 
Ð find control -independent work to fill each word

Ð Cover data -dependent stalls (e.g., F.DIV immediately 
followed by a use of the result) with independent 
instructions

! Solutions:
Ð Get rid of control flow

! Predication
! Loop unrolling

Ð Move code around to maximize scheduling opportunities 
and minimize stalls
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Predication

! Idea: compiler converts control flow dependencies 
into data dependencies 
– In effect, branches are replaced with conditional 

execution 
! In practice, with conditional commit

! How? 
– Instructions on both paths of the branch are executed

! Branch instructions are completely eliminated!
– Each instruction has a predicate bit that is set based on 

the computation of the predicate
– Only instructions with TRUE predicates are committed
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Predication
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if (cond)
b = 0;

else
b = 1;

x = b + 1;

Normal code 
(branch-based control flow)

Predicated code

JOIN:



Predication Pros & Cons

! Advantages: 
Ð avoid pipeline bubbles whenever there is a branch

Ð compiler can hide data hazards by scheduling 
independent instructions

! Disadvantages: 
Ð More instructions executed (bad for power)

Ð Potentially longer critical path than if only the correct 
side of the branch was executed
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Loop Unrolling

! Idea: replicate loop body multiple times within 
one iteration of the loop

! Advantages:
Ð Reduces loop maintenance overhead (induction variable 

update, condition code computation, branch)

Ð Enlarges basic block size, thus maximizing scheduling 
opportunities

! Basic block: a sequence of instructions with exactly one 
entry point and exactly one exit point

! Drawback:
Ð Need extra code to detect & deal with cases when 

unroll factor not multiple of iteration count
! In practice, this is a small price to pay
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Safety and legality of code motion 

! Two characteristics of code motion:
Ð Safety: whether or not spurious exceptions may occur

Ð Legality: whether or not the result is guaranteed correct
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Safety and legality of code motion

! Two characteristics of code motion:
– Safety: whether or not spurious exceptions may occur
– Legality: whether or not the result is guaranteed correct
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Multiflow and Trace Scheduling

Multiflow Computer: pioneered the VLIW design style 
Ð Available in VLIW widths of 7, 14, and 28 ops/ inst

! Max width of 28 required a 1024 -bit word

Ð Introduced powerful compilation techniques, particularly 
trace scheduling

! Trace scheduling fused multiple basic blocks on ÒhotÓ code 
paths into regions called traces

! These traces created rich opportunities for code motion
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Modern-day case study: TriMedia TM 1000

§ 5 issue slots, 28 functional units, 128 registers
§ Each inst within a word can be predicated

– Any one of 128 regs can serve as the predicate (LSB is used)
§ No dynamic hazard detection (compiler’s job)

– Except on cache misses, which will lock the pipeline
§ Non-excepting loads enable load speculation (no virtual mem)
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Superscalar vs. VLIW Processors

SuperScalars
+ Able to handle dynamic events like cache misses, unpredictable memory 

dependences, branches, etc.
+ Can exploit old binaries from previous implementations

- Complexity limits issue width to 4-8

VLIW
+ Much simpler hardware implementation 
+ Implementations can have wider issue than superscalars

- Require more complex compiler support

- Cannot use old binaries when pipeline implementation changes

- Code size increases because of empty issue slots
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What are the practical Limitations to ILP?

! Limitations on max issue width and instruction window size

! Effects of realistic branch prediction

! The effect of limited numbers of rename registers

! Memory aliasing

! Variable memory latencies (because of caches)
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Effect of Instruction Window (i.e., ROB)
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Effect of Branch prediction (2K ROB)
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Limits to Multiple -issue

! Fundamental limits to ILP in most programs:
Ð Need N independent instructions to keep a W -issue processor busy, 

where N = W * pipeline depth
Ð Data and control dependences significantly limit amount of ILP

! Complexity of the hardware based on issue width:
Ð Number of functional units increases linearly ! OK
Ð Number of ports for register file increases linearly ! bad
Ð Number of ports for memory increases linearly ! bad
Ð Number of dependence tests increases quadratically ! bad
Ð Bypass/forwarding logic and wires increases quadratically ! bad

These two tend to ultimately limit the width of  
practical dynamically-scheduled superscalars
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Summary of Factors Limiting ILP in Real Programs

! Compared with an ideal processor
– Limited instruction window
– Finite number of registers (introduces WAW and WAR stalls)
– Imperfect branch prediction (pipeline flushes)
– Limited issue width
– Instruction fetch delays (cache misses, across-block fetch)
– Imperfect memory disambiguation (conservative RAW stalls)

! Implications for future performance growth?
– Single processor has inherent limits
– To use future silicon area, need to go to multiple processors
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