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Computer Algebra
Basic Information

▶ Lecturer: Kyriakos Kalorkoti (KK).
▶ Email: kk@inf.ed.ac.uk
▶ Web: http://www.inf.ed.ac.uk/teaching/courses/ca

▶ Lecture log here.

Working definition of Computer Algebra: Algorithms, techniques
and tools to assist with mathematical work (not just numerical).
Syllabus

1. Introduction to Axiom (Exercises 1 and home reading, see
lecture log for details).

2. Basic Structures and Algorithms.
3. Keeping the Data Small: Modular Methods.
4. Polynomial Simplification.
5. Real Roots of Polynomials. 2 / 151



Computer Algebra
Coursework
Accounts for 20% of final assessment.
Each assignment is allocated 3 weeks, they can all be done
within 2 weeks at most.

1. Exploring Axiom (20%).
▶ A timetabled way for you to get to know the system.
▶ Write some simple code.

2. Computing with algebraic extensions (40%).
▶ Key practical showing connection of abstract ideas with

practical concerns.
▶ Write some code.
▶ Some pencil and paper parts also.

3. Operations on ideals (40%).
▶ Uses ideas from the course with Axiom facilities as tools.
▶ Do some calculations with Axiom (on ideals).
▶ Some pencil and paper parts.
▶ Do a past exam.
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Coursework Submission
▶ Hard copy via ITO, code via submit command on DICE.
▶ See course web page for details.

General Study
▶ Allow around 2 hours of study per lecture.
▶ Try selected exercises from the notes: some will be suggested

at the end of various lectures (and discussed at the next).
▶ Speak to me (or send email) if you need help; do this sooner

rather than later.
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Exam
▶ Recent past exams are a reasonable guide (but note change

from Maple to Axiom).
▶ Revision will be much easier if you study continuously.
▶ If there is demand a meeting will be arranged to discuss

approach to exam.
▶ A guide to revision will be issued at the end of the course.
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My Educational Approach

1. The lecturer’s job is to provide opportunities for students to
learn the subject (lectures, notes, exercises, feedback, help).

2. The students’ job is to use those opportunities to the full.
3. Attending lectures is essential not an optional extra.
4. Questions during lectures are strongly encouraged.
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General Introduction: motivation
Eugene Wigner: The Unreasonable Effectiveness of Mathematics in
the Natural Sciences.

The miracle of the appropriateness of the language of
mathematics for the formulation of the laws of physics is
a wonderful gift which we neither understand nor deserve.
We should be grateful for it and hope that it will remain
valid in future research and that it will extend, for better
or for worse, to our pleasure, even though perhaps also to
our bafflement, to wide branches of learning.

in Communications in Pure and Applied Mathematics, vol. 13,
No. I (February 1960)

Obvious consequence: Developing tools to help is very important.
Observation: The usefulness of a deep concept is often far from
obvious. The obvious approach is often not the best.
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Examples

Differentiate:

f = 32x8 − 16x7 + 82x6 − 40x5 + 85x4 − 40x3 + 101x2 − 48x + 6
8x5 − 2x4 + 4x3 − x2 + 12x− 3 .

Rule:
d(p/q)

dx =
qdp

dx − pdq
dx

q2 .

Direct application gives a big mess!
▶ Use a machine.
▶ Simplify; in fact

f = 4x3 − x2 + 8x− 2.

8 / 151



Integrate

g =
x2 − 5

x(x− 1)4 .

Decompose into partial fractions:

g =
−5
x +

5
x− 1 −

5
(x− 1)2 +

6
(x− 1)3 −

4
(x− 1)4 .

More generally consider

x + a
x(x− b)(x2 + c).

More ambitiously allow log, sin, cos, roots etc.
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Find a formula for n∑
i=0

f(i)

where
▶ n is a symbol not a number.
▶ f comes from a fairly wide class of functions.

Examples:
n∑

i=1
2i5 − i3 + 1 =

4n6 + 12n5 + 7n4 − 6n3 − 5n2 + 12
12

n∑
i=1

i + 1
2i =

4 · 2n − n− 3
2n .
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Features of Computer Algebra Systems

▶ Interactive use.
▶ File handling.
▶ Polynomial manipulation.
▶ Elementary special functions.
▶ Arithmetic.
▶ Differentiation.
▶ Integration.
▶ Own programming language.
▶ Huge number of built in (mathematical etc.) data structures

and algorithms.
▶ Graphics.
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Example Axiom code
-- Returns the Cauchy bound on the positive roots of a polynomial
-- Inputs:
-- p.....a univariate polynomial with rational coefficients.
-- x.....a symbol.
-- Output:
-- An upper bound on the positive roots of the polynomial (an error is returned if
-- it obviously has none, but an absense of an error does not mean it has any).
-- Remark:
-- This is a quick and dirty version, it uses floating point arithmetic!
cauchy(p:POLY(FRAC(INT))):Float==
local V,x,n
V:=variables(p)
if #(V)>1 then error "The input must be a univariate polynomial"
else if #(V)=1 then x:=V.1
if leadingCoefficient(p)<0 then p:=-p
C:=coefficients(p)
n:=0
for c in C repeat if c<0 then n:=n+1
if n=0 then error "The polynomial has no positive roots"
else
m:=degree(p,V).1
lc:=leadingCoefficient(p)
Blist:=[]::List(AlgebraicNumber)
for i in 0..m-1 repeat
coeff:=coefficient(p,x,i)
if coeff<0 then Blist:=cons((-n*coeff/lc)^(1/(m-i)),Blist)

B:=map(r+->r::Float,Blist)
mx:=B.1::Float
for v in B repeat if v::Float>mx then mx:=v::Float
mx
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Forward look to Exercise II
Problem: Find all Intersections of two Algebraic Curves
Requirement: Absolute reliability, no approximations.

Example:
▶ f = x5 + y5 + 2 y3 − 1.
▶ g = x2y4 − xy3 − 2.

Fact: Common points are
(a, h(a))

where h is a polynomial of degree 29 and a is any solution of
a30 − 4 a25 + 12 a22 + 7 a20 − 36 a17 − 56 a16 − 7 a15 + 8 a14+

36 a12 + 112 a11 + 100 a10 − 16 a9 − 64 a8 − 12 a7 − 56 a6−

97 a5 − 120 a4 + 64 a3 + 64 a2 − 32 = 0.

Conclusion: The two curves have exactly 30 distinct common
points (in the complex plane). Exactly 2 of them are real:
approximately 1.254 and −1.098.
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Algorithm: Short; discussed in Exercises 2.
Necessary tools: Some standard algebraic structures:

▶ polynomial rings,
▶ quotients of rings (special case),
▶ algebraic extensions and facts about them.

Implementation: Very straightforward in Axiom, quite short.
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Basic Structures and Algorithms
Rationale

▶ Structures give us a convenient and precise language.
▶ They capture and abstract common patterns and properties.
▶ They have come about as the result of centuries of research

by very many people.
▶ Exercises 2 will show convincingly how they help.

Standard Notation
1. Z, the integers,
2. Q, the rationals,
3. R, the reals,
4. C, the complex numbers,
5. Zn the integers modulo n where n ≥ 1 is a natural number.
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Binary Operations

▶ Function on a set R taking two elements of R returning an
element of R:

◦ : R× R→ R.
▶ Commutative if

x ◦ y = y ◦ x for all x, y ∈ R.

▶ Associative if

(x ◦ y) ◦ z = x ◦ (y ◦ z) for all x, y, z ∈ R.

Nice consequence:
x1 ◦ x2 ◦ · · · ◦ xn

gives same result for any valid bracketing. (Prove this.)
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Rings
Ingredients
Set R with two binary operations +, ∗ called addition and
multiplication.
Requirements

1. + is associative,
2. + is commutative,
3. there is an element 0 of R such that x + 0 = x for all x ∈ R,
4. for each element x of R there is an element y ∈ R such that

x + y = 0, (i.e. x has an additive inverse),
5. ∗ is associative,
6. for all x, y, z ∈ R we have

x ∗ (y + z) = x ∗ y + x ∗ z, (x + y) ∗ z = x ∗ z + y ∗ z,

i.e., ∗ is left and right distributive over +.
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Conventions & Facts

▶ 0 + x = x for all x ∈ R.
▶ 0 is unique.
▶ Additive inverse of an element x is unique, denoted by −x.

▶ Write
x− y

instead of
x + (−y).

▶ For all x ∈ R
x ∗ 0 = 0 = 0 ∗ x.

▶ Usually write
xy

instead of
x ∗ y.
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Examples of Rings

1. Z, Q, R, C with usual addition & multiplication.
2. 2Z set of all even integers, the usual addition & multiplication.
3. Zn integers modulo integer n ≥ 1. Addition & multiplication

carried out as normal but take as result the remainder after
division by n.
More accurately elements are equivalence classes of
remainders. Operations are on equivalence classes.

4. Square matrices of a fixed size with integer entries. Normal
operations of matrix addition & matrix multiplication.

5. S any set, P = P(S) the power set of S (i.e., set of all subsets
of S).

▶ Addition is symmetric difference, i.e., A + B is A ∪ B− A ∩ B.
▶ Multiplication is intersection, i.e., A ∗ B is A ∩ B.

Example of a Boolean ring, i.e. x ∗ x = x for all x.
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More Definitions
Ring R is:

▶ commutative if ∗ is commutative.
▶ has (multiplicative) identity if it has an element e s.t.

ex = xe = x, for all x ∈ R.
Usually denote e by 1.

Note: Identity is unique if it exists.
If R has identity, say that x has (multiplicative) inverse if

xy = yx = 1, for some y ∈ R.

Note: Inverse of an element x is unique if it exists, denoted by x−1.
‘Strange’ behaviour: In Z6 we have 3 ̸= 0 and 2 ̸= 0 but

2× 3 = 0.
Not really strange, we are dealing with equivalence classes of
remainders: 2× 3 is divisible by 6, hardly a surprise!
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Fields
Rings with extra properties:

1. there is a multiplicative identity that is different from 0,
2. multiplication is commutative,
3. every non-zero element has an inverse.

Here
xy = 0⇒ x = 0 or y = 0.

Proof: Suppose xy = 0 but x ̸= 0. Then x−1 exists. Thus

0 = x−10
= x−1(xy)
= (x−1x)y
= 1y
= y
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‘Strange’ things still possible: Z2 is a field but

1 + 1 = 0.

Similar thing happens any finite field. Can also happen in infinite
fields.
Examples of fields:

1. Q, R, C all with usual operations.
2. Zp when p is a prime.

Note: Zn is not a field if n = 1 or a composite number.
Suggested Exercise: 4.2.
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Intermediate Structures

▶ Integral domain: (ID) commutative ring with identity,
different from 0, s.t.

xy = 0⇒ x = 0 or y = 0.

Note: Every field is an ID (but not conversely).
Consequence: If ax = ay and a ̸= 0 then x = y.

▶ Unique factorization domain: (UFD) notion of irreducible
elements (cf prime numbers) and unique decomposition of
elements like integer case.
In UFD’s greatest common divisors are guaranteed to exist.
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Definition: Let a, b ∈ R, where R is a ring. We say that a divides b,
written as a | b, if and only if b = ac for some c ∈ R.
Note: Division is of no interest in fields.
Definition: Let a, b ∈ D, where D is an integral domain. Then

▶ d is a common divisor of a, b if d | a and d | b.
▶ d is a greatest common divisor (gcd) of a, b if

1. d is a common divisor of a, b and
2. for all common divisors c of a, b we have c | d.

Note: If a ̸= 0 or b ̸= 0 then necessarily d ̸= 0.
Also 0 is the only gcd of 0, 0.
Fact: If d1, d2 are two gcd’s of a, b then there is an invertible
element u of R s.t. d1 = ud2.
Conversely if d is a gcd of a, b and u is an invertible element of R
then ud is also a gcd of a, b.
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Canonical and Normal Representations

A representation is:
▶ Canonical if equality of objects is same as equality of

representations.
▶ Each object has exactly one representation.

▶ Normal if 0 has only one representation. (In a system with a
notion of 0 and subtraction.)

▶ This means that we can test objects for equality.

a = b ⇐⇒ a− b = 0 ⇐⇒ R(a− b) ≡ R(0).
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Integers and Rationals

Integers
Use a large base B which

1. fits into a word (usually leave a bit for carries),
2. is usually a power of 2 or 10 and is largest power (of 2 or 10)

s.t. B2 representable in host machine arithmetic.
Representation: hold digits in a linked list or an array.

27 / 151



Karatsuba’s Algorithm
Two integers of length n in base B:

x = aBn/2 + b,
y = cBn/2 + d,

(adjust appropriately for n odd). Now
xy = acBn + (bc + ad)Bn/2 + bd.

No improvement. But
bc + ad = (a + b)(c + d)− ac− bd.

Leads to time

t(n) =
{

k1, if n = 1;
3t(n/2) + k2n, if n > 1.

(k1, k2 constants). Solution:
t(n) = Θ(nlog2 3), (log2 3 ≈ 1.67).

Pays off for integers of sufficiently many digits.
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Fractions

Definition: a, b integers not both 0. Greatest common divisor,
gcd(a, b), is largest integer d dividing both a and b.
Always represent a/b as p/q with q ≥ 1 and gcd(p, q) = 1. So can
convert to an integer type if and only if q = 1.
Gives canonical form.
Representation: any structure that can hold a pair of integers.
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Rational arithmetic
a/b, c/d in canonical form.

a
b ×

c
d =

ac
bd =

ac/ gcd(ac, bd)
bd/ gcd(ac, bd)

Much better:
d1 = gcd(a, d),
d2 = gcd(b, c).

Required canonical form is:

(a/d1)(c/d2)

(b/d2)(d/d1)
.

Justified because

gcd(a, b) = gcd(c, d) = 1 =⇒
gcd(ac, bd) = gcd(a, d) gcd(b, c).

Division same.
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For addition/subtraction put:
a
b ±

c
d =

p
q ,

r.h.s. in canonical form.
Compute

p′ = a d
gcd(b, d) + c b

gcd(b, d)

q′ = bd
gcd(b, d)

Now:
p = p′/ gcd(p′, q′), q = q′/ gcd(p′, q′).

Suggested Exercise: 4.5
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Euclid’s Algorithm for the Integers

Simple properties of gcd’s:
1. gcd(a, b) = gcd(b, a).
2. gcd(a, b) = gcd(|a|, |b|).
3. gcd(0, b) = |b|.
4. gcd(a, b) = gcd(a− b, b).

Simple (inefficient) algorithm (a, b ≥ 0):

if a = 0 then b
elif a < b then gcd(b, a)
else gcd(a− b, b)
fi
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Improved version (Euclid’s Algorithm)
Assume a ≥ 0, b > 0 and put

a = qb + r, 0 ≤ r < b, q ∈ Z.

q is quotient of a, b and r remainder. Have
gcd(a, b) = gcd(b, r).

Algorithm: Put r0 = a, r1 = b:
r0 = q1r1 + r2

r1 = q2r2 + r3

r2 = q3r3 + r4
...

rs−2 = qs−1rs−1 + rs

rs−1 = qsrs + rs+1

where
rs+1 = 0 and 0 ≤ ri < ri−1, for 1 ≤ i ≤ s + 1.
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Extended version
Rewrite last step as

rs = rs−2 − qs−1rs−1.

Remainder rs−1 can be written as
rs−1 = rs−3 − qs−2rs−2

so
rs = −qs−1rs−3 + (1 + qs−1qs−2)rs−2.

Process can be continued until
rs = ur0 + vr1

where u, v are integers.
Conclusion: If d = gcd(a, b) then there are integers u, v s.t.

d = ua + vb.
Can compute u, v by ‘forwards’ Euclid’s algorithm.
Suggested Exercise: 4.9
Lemma: Zn is a field if and only if n is a prime. 34 / 151



Polynomials
▶ R a commutative ring with 1.
▶ x a brand new symbol—called an indeterminate over R.
▶ Polynomials in indeterminate x with coefficients from R:

a0 + a1x + a2x2 + · · ·+ anxn + · · ·

where ai ∈ R and all all but finitely many are 0
▶ Could just as well write

(a0, a1, a2, . . .)

but x very useful.
▶ ai is coefficient of xi.
▶ a0 is constant term.
▶ Set of all such polynomials denoted by R[x].
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Convenient abbreviation:
∞∑
i=0

aixi = a0 + a1x + a2x2 + · · ·+ anxn + · · ·

Equality:
∞∑
i=0

aixi =
∞∑
i=0

bixi

iff
a0 = b0, a1 = b1, a2 = b2, . . .

Sensible convention: write

2 + 5x3 − 3x5

instead of

2 + 0x + 0x2 + 5x3 + 0x4 − 3x5 + 0x6 + · · ·
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Turning R[x] into a Ring

▶ Define +, ∗ on polynomials in the usual way.
▶ Makes R[x] into commutative ring with 1.

Further definitions: For p ∈ R[x] define:
▶ Degree, deg(p); undefined for zero polynomial.
▶ Leading coefficient, lc(p); undefined for zero polynomial.
▶ Basic facts:

deg(p± q) ≤ max
(
deg(p), deg(q)

)
,

deg(pq) ≤ deg(p) + deg(q),
deg(pq) = deg(p) + deg(q), if lc(p) lc(q) ̸= 0,

whenever both sides defined.
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Polynomial Functions

Given
p = a0 + a1x + · · ·+ anxn

Define corresponding function

p̂ : R→ R,
p̂(α) = a0 + a1α+ · · ·+ anα

n.

Note: p, p̂ very different objects.
Consider equality of polynomials v. equality of polynomial
functions.
Fact: Two notions of equality coincide if R an infinite integral
domain.
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For R finite two notions very different:

R = { r1, r2, . . . , rn },
Z(x) = (x− r1)(x− r2) · · · (x− rn).

Suppose R is not the zero ring (so 1 ̸= 0). Now

Z(x) ̸= 0, in R[x],

but
Ẑ(x) = 0.

39 / 151



Polynomials in Several Indeterminates

R[x] a ring.
New indeterminate y.
Get ring R[x][y].
Polynomials in y, coefficients are polynomials in x.
Essentially same ring as R[y][x]. (N.B. used xy = yx.)
Denote by R[x, y]. Elements look like

∞∑
i,j=0

rijxiyj,

where rij ∈ R.
Distinguish between total degree, deg(p), degree in x, degx(p), and
degree in y, degy(p).
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Can do same for indeterminates x1, x2, . . . , xn.
Power products: expressions

xi1
1 · · · xin

n

Degree of this is i1 + i2 + · · ·+ in.
Notion of degree for polynomials in R[x1, x2, . . . , xn].
Coefficient of a power product t in a polynomial p: coeff(t, p).
Convention: if X = { x1, x2, . . . , xn } write R[X] instead of
R[x1, x2, . . . , xn].
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Factorization and Greatest Common Divisors
R a UFD. Then

deg(pq) = deg(p) + deg(q), for all p, q ∈ R[x].

Given non-zero f ∈ R[x] put f = ap where a is constant (either 1 or
is non-invertible) and p has no non-invertible constant factors. Try
to express p as:

p = hk
where deg(h) < deg(p), deg(k) < deg(p).
Split h, k likewise. Eventually get to

p = pe1
1 pe2

2 · · · pes
s ,

where each pi can’t be split up, i.e. it is irreducible.
Question: Is this factorization unique?
Answer: Yes if you are careful about what you mean by ‘unique’.
Consequence: : R a UFD ⇒ R[x1, x2, . . . , xn] a UFD.
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Fact: If R is a UFD then gcd’s exist in R[x].
Note: if p | q in R[x] then deg(p) ≤ deg(q).
Fact: Assume f ̸= 0 or g ̸= 0. Any gcd h of f, g ∈ R[x] has
maximum possible degree over all common divisors of f, g.
• If p is a common factor, p | h so deg(p) ≤ deg(h).
Question: Given f, g as above with h a gcd. Suppose p is a
common divisor of maximum degree how does p relate to h?
Answer: By choice of p we have deg(h) ≤ deg(p). By above fact
deg(p) ≤ deg(h), i.e., deg(p) = deg(h). Since h is a gcd and p a
common factor, p | h. Thus h = ap and so deg(a) = 0, i.e. a ∈ R.
Thus p is a gcd except for possibly missing a constant factor.
Fact: Let k be a field and f, g ∈ k[x]. Suppose h is a common
factor of highest degree then h is a gcd of f, g. Can make it unique
by insisting it is monic.
Standard abuse of notation: gcd(f, g) stands for a gcd of f, g.
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Euclid’s Algorithm for Univariate Polynomials
Assume coefficients are from a field and g ̸= 0. Can put

f = qg + r, r = 0 or deg(r) < deg(g).
q is quotient, r is remainder.
Suggested Exercise: Prove that q, r are unique.
Algorithm: Put r0 = f, r1 = g:

r0 = q1r1 + r2

r1 = q2r2 + r3

r2 = q3r3 + r4
...

rs−2 = qs−1rs−1 + rs

rs−1 = qsrs + rs+1

where rs+1 = 0 and deg(ri) < deg(ri−1), 1 ≤ i ≤ s.
Must eventually have ri = 0 since

deg(r0) > deg(r1) > . . . > deg(ri) > . . . ≥ 0.
44 / 151



Rational Coefficients

▶ Working with fractions ⇒ many integer gcd computations.
▶ Can slow things down.
▶ Try to use only integer arithmetic.

Fact: If f, g ∈ Z[x], deg(f) > deg(g) then can find q, r ∈ Z[x] s.t.

lc(g)deg(f)−deg(g)+1f = qg + r,

where r = 0 or deg(r) < deg(g).
Problem: Coefficients blow up exponentially.
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Well Known Example

f = x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5,
g = 3x6 + 5x4 − 4x2 − 9x + 21.

The sequence of remainders obtained by applying the modified
algorithm is

−15x4 + 3x2 − 9,

15795x2 + 30375x− 59535,

1254542875143750x− 1654608338437500,

12593338795500743100931141992187500.

Possible way out: Take out gcd of coefficients at each
stage—errm . . .
Above board method: Sub-resultant polynomial remainder
sequences. OK but compicated.
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Extended Euclidean Algorithm for Polynomials

Just like integer case get polys u, v s.t.

uf + vg = gcd(f, g).

Moreover can ensure:

u = 0 or deg(u) < deg(g)
v = 0 or deg(v) < deg(f)
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Rational Expressions

▶ k a field.

k(x1, . . . , xn) = {p/q | p, q ∈ k[x1, . . . , xn] & q ̸= 0}.

▶ Equality:

p/q = p′/q′ ⇔ pq′ − p′q = 0, in k[x1, . . . , xn].

▶ Define +, ∗ by:

(p/q) + (p′/q′) = (pq′ + p′q)/qq′,
(p/q)(p′/q′) = pp′/qq′.

Gives us a field.
Caution: Again distinguish between functions and elements of
k(x1, . . . , xn).
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Representation of Polynomials and Rational Expressions

Basic types:

Dense Sparse

Recursive

Distributed
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Recursive Representation
An expression of the isomorphism

R[x1, . . . , xn] ∼= R[x1, . . . , xn−1][xn].

Regard xn as the main indeterminate.
Example:

3xy2 + 2y2 − 4x2y + y− 1

represented as

(3x + 2)y2 + (−4x2 + 1)y + (−1)y0,

y is main indeterminate.
Generally: Use ∑

cixi
n

each ci a polynomial represented similarly.
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Distributive Representation

Consider power products in given indeterminates e.g.

x2
1x3x7

5.

Pick a total order on power products s.t.
▶ 1 (i.e. x0

1x0
2 · · · x0

n) is least,
▶ each power product has only finitely many others less than it.

Can now write
p(x1, . . . , xn) =

∑
t≤t̄

ctt

where ct ∈ R for each t.
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Example suitable ordering:

Total degree then lexicographic.
1. sort according to degree,
2. within each degree use lexicographic ordering: order

indeterminates, e.g.

x1 >L x2 >L · · · >L xn

then
xi1

1 · · · xin
n >L xj1

1 · · · xjn
n

if and only if there is a k such that il = jl for 1 ≤ l < k and
ik > jk.
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Dense Representations
Record all coefficients up to highest degree main indeterminate or
highest power product.
Example: Recursive representation

m∑
i=0

cixi ←→ (c0, . . . , cm).

Example: Distributed representation∑
t≤t̄

ctt←→ (c1, ct1 , . . . , ct̄),

where (. . .) denotes a list or array.
Problem: Can lead to a great deal of wasted space,
Consider x1000 + 1 or x4y7 + x + 1.
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Sparse Representations

▶ Drop all zero coefficients.
▶ With each non-zero coefficient record corresponding degree or

power product.

Example:

x1000 + 1←→ ((1, 1000), (1, 0)),
x4y7 + 2x + 1←→ ((1, (4, 7)), (2, (1, 0)), (1, (0, 0))).

In second example
xe1

1 · · · xen
n

represented by
(e1, . . . , en).
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Rational Expressions

▶ Pair of polynomials ⟨f,g⟩
▶ Numerator in normal form ⇒ ⟨f,g⟩ in normal form.
▶ Dangerous temptation: Remove gcd(f, g).

Consider:
1− xn

1− x = 1 + x + · · ·+ xn−1.

Take e.g. n = 220.
▶ L.h.s. needs less than 10 bytes.
▶ R.h.s. needs well over a 1,000,000 bytes!

▶ Nevertheless Axiom does remove gcd(f, g) automatically,
Maple does not.

▶ Maple uses sum of products representation; very compact but
can lead to problems.
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Intermediate Expression Swell
Vandermonde determinant

V(x1, x2, . . . , xn) =

∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
x1 x2 . . . xn
x2

1 x2
2 . . . x2

n
... ... ...

xn−1
1 xn−1

2 . . . xn−1
n

∣∣∣∣∣∣∣∣∣∣∣
.

Basic algebra shows:
V(x1, x2, . . . , xn) =

∏
1≤i<j≤n

(xj − xi).

Consider:

Z(x1, x2, . . . , xn+1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
1 1 . . . 1
x1 x2 . . . xn+1
x2

1 x2
2 . . . x2

n+1... ... ...
xn−1

1 xn−1
2 . . . xn−1

n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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Obviously:
Z(x1, x2, . . . , xn+1) = 0.

But expanding along first row:

Z(x1, x2, . . . , xn+1) =
n+1∑
i=1

(−1)i+1V(x1, . . . , x̂i, . . . , xn+1)

=
n+1∑
i=1

(−1)i+1
∏

1≤j<k≤n+1
j,k ̸=i

(xk − xj),

Perfectly decent sum of products representation.
Expansion leads to n! terms before any cancellation.
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Keeping the Data Small: Modular Methods
Gcd of Polynomials in Z[x]

Definition: For f ∈ Z[x],
f = amxm + am−1xm−1 + · · ·+ a0

define its content & primitive part by:
cont(f) = gcd(am, am−1, . . . , a0),

pp(f) = f/ cont(f).

Lemma: (Gauss) For any f, g ∈ Z[x] we have
cont(fg) = cont(f) cont(g) and pp(fg) = pp(f) pp(g).
Corollary: : For f, g ∈ Z[x]

cont(gcd(f, g)) = gcd(cont(f), cont(g)),
pp(gcd(f, g)) = gcd(pp(f),pp(g)).

Conclusion: Can restrict attention to primitive polynomials—gcd
also primitive.
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Suggested Exercise: Let f, g ∈ Z[x] and h be their gcd in Z[x].
Prove that h is also a gcd of f, g in Q[x].
Useful fact: lc(gcd(f, g))| gcd(lc(f), lc(g)).
Equivalantly: If a ̸ | lc(f) or a ̸ | lc(g) then a ̸ | lc(gcd(f, g)).
Definition: Put

(f mod p) = (am mod p)xm + (am−1 mod p)xm−1 + · · ·
+ (a0 mod p).

Abbreviate (f mod p) to fp. Gives us a function

ϕ : Z[x]→ Zp[x]
f 7→ fp.

ϕ(1) = 1, ϕ(f + g) = ϕ(f) + ϕ(g), ϕ(fg) = ϕ(f)ϕ(g).
▶ Example of a ring homomorphism.
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A = x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5,
B = 3x6 + 5x4 − 4x2 − 9x + 21.

Put
A = PH, B = QH, in Z[x],

where H = gcd(A,B). Consider modulo 5;
A5 = P5H5, B5 = Q5H5, in Z5[x].

Direct computation in Z5[x] shows:
gcd(A5,B5) = 1.

So H5 = 1, more accurately H5 is a constant. Now
5 ̸ | lc(A)

[
& 5 ̸ | lc(B)

]
⇒ 5 ̸ | lc(H)

⇒ deg(H) = deg(H5) ≤ deg(gcd(A5,B5)) = 0
⇒ deg(H) = 0
⇒ H is a constant.

Thus
gcd(A,B) = 1.
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General Strategy

Input

Output

mod p1 mod p2 ... mod ps

Combine using CRA
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Problems to Address

1. How do we combine the various results in the Zpi [x] into a
single result in Z[x]?

2. Given A,B ∈ Z[x] how big can the coefficients of gcd(A,B)
be?
How do we recover them? (Use symmetric representation of
remainders.)

3. Which primes should we choose? Are there any that should
be avoided?
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Detailed Example

A = 3x4 + 4x3 − 6x2 − 3x + 2,
B = 9x5 + 21x4 + 6x3 + x2 + x− 2,
H = gcd(A,B).

Observations:
1. A, B primitive so H primitive.
2. deg(H) ≤ min(deg(A), deg(B)) = 4.
3. Easy computation shows A ̸ | B so deg(H) < 4. Can put

H = h3x3 + h2x2 + h1x + h0.

Note: Full algorithm does not do this step, only done here to
keep number of coefficients down to 4.
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Aim: Work modulo p for p a prime (maybe use several p).
Compute

Fp = gcd(Ap,Bp)

using Euclid’s algorithm in Zp[x].
Hope: Fp = Hp. Not guaranteed.
Sensible to ensure

p ̸ | lc(A) or p ̸ | lc(B),

so that
deg(Fp) ≥ deg(Hp) = deg(H).

Note: Even if p ̸ | lc(A) or p ̸ | lc(B) might get

deg(gcd(Ap,Bp)) > 3

which means
gcd(Ap,Bp) ̸= Hp.
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First modulus p = 2:

A2 = x4 + x,
B2 = x5 + x4 + x2 + x,

Euclid’s algorithm in Z2[x] gives:

gcd(A2,B2) = x4 + x.

Conclusion: Must be something wrong with 2 as a modulus.
Second modulus p = 3: No good—divides lc(A) and lc(B).
Third modulus p = 5:

A5 = 3x4 + 4x3 + 4x2 + 2x + 2,
B5 = 4x5 + x4 + x3 + x2 + x + 3,

Get
F5 = gcd(A5,B5) = x3 + 4x2 + 2x + 1.

No sign of trouble—carry on with hopeful heart.
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Test: View F5 as an element of Z[x]. See if

F5|A & F5|B.

Test fails: So 5 might be a bad choice or need more work to
recover coefficients of H completely. (At least one of them has
been ‘collapsed’ by taking it modulo 5.)
Fourth modulus p = 7:

F7 = gcd(A7,B7) = x3 + 5x + 4,

and F7 ̸ | A.
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Assumption: Both 5 and 7 are good moduli.
Yields: Four pairs of simultaneous congruences:

h3 ≡ 1 (mod 5), h3 ≡ 1 (mod 7),
h2 ≡ 4 (mod 5), h2 ≡ 0 (mod 7),
h1 ≡ 2 (mod 5), h1 ≡ 5 (mod 7),
h0 ≡ 1 (mod 5), h0 ≡ 4 (mod 7).
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Example: Find all solutions to
h0 ≡ 1 (mod 5), h0 ≡ 4 (mod 7).

First congruence gives:
h0 = 1 + 5q, for q ∈ Z.

Substitute into second congruence:
5q ≡ 3 (mod 7).

Now
3 · 5− 2 · 7 = 1⇒ 3 · 5 ≡ 1 (mod 7)

So:
q ≡ 3 · 3 (mod 7),
≡ 2 (mod 7).

For simultaneous solution take q = 2 + 7q′ in 1 + 5q to get
h0 = 11 + 35q′, for q′ ∈ Z

i.e.
h0 ≡ 11 (mod 35).
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Solve other pairs of congruences to get:

F35 = x3 + 14x2 + 12x + 11

as candidate for H35.
Note: Never did any work modulo 35.
Assumption: Coefficients of H all in range

−17 < h ≤ 18.

Conclusion: Already have H, not just H35.
Simple calculation shows:

F35 ̸ | A.

Give up?—never!
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Crucial observation: When finding gcd’s in Zp[x] we returned
monic results.

▶ In fact any non-zero constant multiple would do just as well
but monic is best.

▶ Assuming p is a good prime, Hp = lc(H) gcd(Ap,Bp) in Zp[x].

Desperate way out: Find lc(H) and multiply monic gcd’s by it.
Much better: Know that

lc(H) | c

where
c = gcd(lc(A), lc(B)) = 3.

Take, in Z5[x] and Z7[x]:

F∗
5 = 3F5 = 3x3 + 2x2 + x + 3,

F∗
7 = 3F7 = 3x3 + x + 5.
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Candidate from F∗
5, F∗

7:

F∗
35 = 3x3 + 7x2 + x− 2.

Make it primitive—OK already.
Now easy to see

F∗
35 | A & F∗

35 | B, in Z[x],

so
gcd(A,B) = F∗

35, in Z[x].
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The Chinese Remainder Problem

D a Euclidean domain—i.e. integral domain in which a version of
Euclidean Algorithm works.
Given:

1. Remainders r1, . . . , rn ∈ D.
2. Moduli m1, . . . ,mn ∈ D− {0} which are pairwise coprime,

i.e. gcd(mi,mj) = 1 for i ̸= j.

Problem: Find r ∈ D such that

r ≡ ri (mod mi)

for 1 ≤ i ≤ n.
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Direct Solution
Let Mi = m1m2 · · ·mi−1mi+1 · · ·mn for 1 ≤ i ≤ n.
Find b1, b2, . . . , bn such that

biMi ≡ 1 (mod mi),

for 1 ≤ i ≤ n (the bi exist because gcd(Mi,mi) = 1).
Then x is a solution to the system

x ≡ r1 (mod m1)

x ≡ r2 (mod m2)

...
x ≡ rn (mod mn)

if and only if

x ≡ r1b1M1 + r2b2M2 + · · ·+ rnbnMn (mod M),

where M = m1m2 · · ·mn.
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Base Case n = 2

r ≡ r1 (mod m1) (1)
r ≡ r2 (mod m2) (2)

Solutions of (1) have form:
r1 + σm1.

So have to find σ such that:
r1 + σm1 ≡ r2 (mod m2).

Use Extended Euclidean Algorithm to find c:
cm1 ≡ 1 (mod m2).

σ = c(r2 − r1) (mod m2).

Thus
r1 + σm1 ≡ r1 + c(r2 − r1)m1

≡ r1 + r2 − r1 (mod m2).
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Observation: Solution r = r1 + σm1 is such that the simultaneous
congruences

x ≡ r1 (mod m1)

x ≡ r2 (mod m2)

hold for x if and only if
x ≡ r (mod m1m2).

General case: Solve first two congruences to obtain r12 as answer.
General problem now reduces to:

x ≡ r12 (mod m1m2)

x ≡ r3 (mod m3)

...
Again have:

x ≡ ri (mod mi), 1 ≤ i ≤ n,
if and only if

x ≡ r (mod m1m2 · · ·mn).
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Conclusion
Can work with conveniently sized moduli m1, . . . ,mn and then
construct result for single large modulus m1m2 · · ·mn.
Theorem: For the case D = Z the solution r computed by CRAn or
bounded as follows

0 ≤ r < m1m2 · · ·mn.

Moreover there is exactly one such r.
Theorem: For the case D = k[x] the solution r(x) computed by
CRAn is is either 0 or bounded in degree as follows

deg(r) < deg(m1) + · · ·+ deg(mn).

Moreover there is exactly one such r(x).
Suggested Exercise: Prove the claim in the preceding Theorem.
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Chinese Remainder Theorem for the Integers

To sum up, stated purely as a theorem we have:
Theorem: Assume r1, r2 . . . , rn ∈ Z and m1,m2, . . . ,mn ∈ Z where
mi > 1, for 1 ≤ i ≤ n, and mi, mj are comprime (i.e.,
gcd(mi,mj) = 1) for 1 ≤ i < j ≤ n. Then there is an integer x such
that

x ≡ r1 (mod m1)

x ≡ r2 (mod m2)

...
x ≡ rn (mod mn).

Moreover setting M = m1m2 · · ·mn we have that x + qM is also a
solution for all q ∈ Z and all solutions are of this form.
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Integer Case
Choose moduli m1, . . . ,mn to be distinct primes:

▶ Automatically coprime.
▶ Zp a field so in Zp[x] gcd’s exists and Euclidean Algorithm

applies.
▶ This is critical.
▶ p not a prime means Zp is not an ID, gcd’s need not exist in

Zp[x].
▶ Example: in Z6[x] we have

3xd + 1 | 2x & 3xd + 1 | 4x for all d,

since 2x = (3xd + 1)2x and 4x = (3xd + 1)4x .
▶ Use of CRT gives coefficients in range:

0 ≤ r < M = m1m2 · · ·mn.

But want possibly negative integers.
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Shift CRA results to range:

−M/2 < r′ ≤ M/2,

where

r′ =
{

r, if r ≤ M/2;
r−M, if r > M/2.

Symmetric representation of remainders.
Can recover R uniquely if −M/2 < R ≤ M/2.
Conclusion: If trying to recover R with

|R| ≤ B

then choose moduli so that

M > 2B.
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Bound on Coefficients of gcd
Theorem: (Landau-Mignotte Inequality) Let A =

∑m
i=0 aixi and

B =
∑n

i=0 bixi in Z[x] and suppose that B is a factor of A. Then

n∑
i=0
|bi| ≤ 2n |bn|

|am|

√√√√ m∑
i=0

a2
i .

Corollary: Let A,B ∈ Z[x]. The absolute value of each coefficient
of gcd(A,B) is bounded by

2min(m,n) gcd(am, bn)min

 1
|am|

√√√√ m∑
i=0

a2
i ,

1
|bn|

√√√√ n∑
i=0

b2
i

 .

Conjecture: Coefficients of gcd(A,B) are no larger in absolute
value than the largest absolute value of the coefficients of A or B.

—FALSE—
Bit of a shame really.
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Choosing Good Primes
▶ A,B ∈ Z[x], G = gcd(A,B).
▶ Choose a prime p s.t. p ̸ | lc(A) or p ̸ | lc(B) so p ̸ | lc(G).

Put
A = PG, B = QG,

so
Ap = PpGp, Bp = QpGp.

Problem: Gp might not be gcd(Ap,Bp) in Zp[x].
Example: A = x− 3, B = x + 2, p = 5.

gcd(A,B) = 1, in Z[x],
gcd(A5,B5) = x + 2, in Z5[x].

Note: We interpret equalities between gcds as being up to an
invertible constant multiple.
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Lemma: Let A,B ∈ Z[x] and p a prime which does not divide both
lc(A), lc(B). Then

deg(gcd(Ap,Bp)) ≥ deg(gcd(A,B)).

Call a prime p which doesn’t work unlucky, i.e.

deg(gcd(Ap,Bp)) > deg(gcd(A,B)).

Same as
gcd(Ap,Bp) ̸= c gcd(A,B)p

for some constant c.
Note: Could have gcd(Ap,Bp) = c gcd(A,B)p for p dividing both
lc(A), lc(B). But then we have no reliable way of detecting bad
primes.
Question: How many unlucky primes are there?
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Very useful tool: introduced by J. Sylvester 19th century.

A = amxm + am−1xm−1 + · · ·+ a0,

B = bnxn + bn−1xn−1 + · · ·+ b0,

both non-zero. Could have am = 0 or bn = 0.
The resultant of A, B is

Res(A, B) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

am am−1 . . . a0
am am−1 . . . a0

· ·
· ·

· ·
· ·

am am−1 . . . a0
bn bn−1 . . . b0

bn bn−1 . . . b0
· ·

· ·
· ·

· ·
bn bn−1 . . . b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Have n rows of a-entries, m rows of b-entries, blank spaces 0.
Note: Strictly speaking should wrote Resm,n(A,B).
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Theorem: Suppose that am ̸= 0 or bn ̸= 0. Then A and B have a
non-constant common factor if and only if Res(A,B) = 0.
Proof: First

Claim: A, B have non-constant common factor iff

ψA = ϕB

for some non-zero ϕ and ψ, with

deg(ϕ) < m & deg(ψ) < n.

Simple proof based on unique factorization.
Now put

ϕ = αmxm−1 + · · ·+ α1,

ψ = βnxn−1 + · · ·+ β1.

When can ψA = ϕB?
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Equivalent to:
a0β1 = b0α1,

a1β1 + a0β2 = b1α1 + b0α2,

...
amβn = bnαm.

View as set of homogeneous equations in m + n unknowns:

α1, . . . , αm, β1, . . . , βn.

Use determinant condition for existence of non-trivial solution to
MX = 0.
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Lemma: Let A, B, p, Ap, Bp be as above and put G = gcd(A,B).
Assume that Ap ̸= 0 and Bp ̸= 0. If p ̸ | Res(A/G,B/G) then

gcd(Ap,Bp) = Gp.

Example:
A = 3x4 + 4x3 − 6x2 − 3x + 2,
B = 9x5 + 21x4 + 6x3 + x2 + x− 2,
G = gcd(A,B)
= 3x3 + 7x2 + x− 2.

Thus
A/G = x− 1,
B/G = 3x2 + 1.

So

Res(A/G,B/G) =

∣∣∣∣∣∣
1 −1 0
0 1 −1
3 0 1

∣∣∣∣∣∣ = 4
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MODGCD(A,B) 7→ G
1. g := gcd(lc(A), lc(B));

M := 2g Landau_Mignote_Bound(A,B);
2. p := new prime not dividing g;
3. Cp := gcd(Ap,Bp) computed in Zp[x]; (ensure lc(Cp) = 1)

Gp := (g mod p)Cp in Zp[x]
4. if deg(Gp) = 0 then return 1 fi;

P := p;
G := Gp;

5. while P ≤ M do
p := new prime not dividing g;
Cp := gcd(Ap,Bp); (ensure lc(Cp) = 1)
Gp := (g mod p)Cp;
if deg(Gp) < deg(G) then goto 4 fi;
(all previous primes were unlucky)
if deg(Gp) = deg(G) then

G := CRA(G,Gp,P, p);
P := pP

fi
od

6. H := pp(G);
if H | A and H | B then return H fi;
goto 2 (all the primes were unlucky)
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Let
A = (x− 2)(x + 1)(x3 + 2x− 1)
= x5 − x4 − 3x2 − 3x + 2,

B = (x− 2)2(x + 1)2

= x4 − 2x3 − 3x2 + 4x + 4.
This yields

g = 1,
M = 2 · 1 · 24 · 1 ·min(

√
24,
√

46)
≤ 160.
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Trace of algorithm:

p = 2 : G2 = x3 + x,
P = 2,
G = x3 + x,

p = 3 : G3 = x2 − x + 1, so 2 was unlucky;
P = 3,
G = x2 − x + 1

p = 5 : G5 = x2 − x− 2,
G = x2 − x− 2, this is gcd(A,B).

Note: Algorithm would do 2 more steps to ensure P > 160
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Polynomial Simplification
Basics of Algebraic Geometry

▶ k a field,
▶ X = {x1, . . . , xn} indeterminates over k,
▶ p1(x1, . . . , xn), . . . , pm(x1, . . . , xn) ∈ k[X].

Definition: The Variety corresponding to the polynomials is the set
of their common zeros:

V(p1, . . . , pm) = { (a1, . . . , an) ∈ kn | pi(a1, . . . , an) = 0,
for 1 ≤ i ≤ n }.

▶ Subset of kn (variety depends on k and n).
▶ Definition makes sense for arbitrary S ⊆ k[X]:

V(S) = { (a1, . . . , an) ∈ kn | p(a1, . . . , an) = 0,
for all p ∈ S }.
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Ideals

Take:
p1, . . . , ps ∈ S,
q1, . . . , qs ∈ k[X].

Put
q = q1p1 + · · ·+ qsps.

Obviously

q(a1, . . . , an) = 0, for all (a1, . . . , an) ∈ V(S).

Thus
V(S ∪ {q}) = V(S).

Can add any set of polynomials like q to S without changing the
variety.
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Definition: The ideal of k[X] generated by S, denoted by (S), is:
(S) = { q1p1 + · · ·+ qsps | s ≥ 1, qi ∈ k[X], pi ∈ S,

for 1 ≤ i ≤ s }.
Have

V
(
S
)
= V

(
(S)

)
.

Say that S is a basis of ideal I if I = (S). (I is generated by S.)
Note: Bases not unique.
Note: Exactly the same definition of ideal applies to arbitrary
commutative rings.
Abstract definition: I is an ideal if and only if

1. I ̸= ∅,
2. p1, p2 ∈ I⇒ p1q, p1 − p2 ∈ I for all q ∈ k[X].

Fact: If S1 ⊆ S2 then (S1) ⊆ (S2).
Fact: If I is an ideal and p1, . . . , ps ∈ I, q1, . . . , qs ∈ k[X] then
q1p1 + · · ·+ qsps ∈ I.
Fact: If I is an ideal and S ⊆ I then (S) ⊆ I.
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S ⊆ k[x, y] with elements

p1 = x2y + x− 1,
p2 = xy2 + y− 1.

Then (S) contains

(2x + 3y2)p1 = 3x2y3 + 2x3y + 3xy2 + 2x2 − 3y2 − 2,
yp1 − xp2 = x− y,

and infinitely more.
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Consider
p1 = x + y− 2z− 1,
p2 = 2x− 3y− z + 2,
p3 = x− y + z,

from Q[x, y, z] and let I = (p1, p2, p3). Now
p4 = p2 − 2p1 = −5y + 3z + 4 ∈ I

Therefore
p5 = p3 − p1 − 2/5p4 = 9/5z− 3/5 ∈ I

Thus
(p1, p4, p5) ⊆ I.

Easily p2, p3 ∈ (p1, p4, p5) so
I = (p1, p4, p5).

Thus
V(I) = V(p1, p4, p5)

= V(x + y− 2z− 1,−5y + 3z + 4, 9/5z− 3/5).
Final set of equations is in triangular form so very easy to solve. 94 / 151



Major Problem

Question: Does every ideal have a finite basis?.
Geometric significance: Given figures in n dimensional space
defined by infinitely many polynomial equations. Are there finitely
many equations that define precisely the same figures?
|X| = 1: Yes—easy (follows from Euclidean Algorithm).
|X| = 2: Yes—long & complicated proof by Gordan (the ‘King

of the invariants’).
|X| arbitrary: Yes—Hilbert’s Basis Theorem (1888) very short

proof!
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Theorem: [Hilbert’s Basis Theorem, (1888)] Every ideal of k[X] has
a finite basis.
Method of proof: non-constructive.
Gordan’s reaction: ‘Das ist nicht Mathematik. Das ist Theologie’.
Not just sour grapes—fairly typical at the time.
Later on: Hilbert produced constructive proof based on earlier
non-constructive one.
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Can view V as a function

Ideals→ Varieties.

Have obvious function I in opposite direction:

Varieties→ Ideals

assigns to variety V the ideal

I(V) = { p | p ∈ k[X] & p(a1, . . . , an) = 0,
for all (a1, . . . , an) ∈ V }.

Questions:
1. is I = I V(I) for an arbitrary ideal I of k[X]?
2. is V = V I(V) for an arbitrary variety V of kn?
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Easily:
1. I ⊆ I V(I) for all ideals I of k[X],
2. V ⊆ V I(V) for all varieties V of kn,

In fact always have
V = V I(V)

But can have
I ̸= I V(I),

e.g. take V = V(p(x)2), p(x) non-constant.
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Definition: k is algebraically closed if every non-constant p ∈ k[x]
has a root in k
Example: C, field of complex numbers.
Assumption: from now on k is algebraically closed.
Theorem: [Hilbert’s Nullstellensatz, (1893)] Let I be an ideal of
k[X] and q a polynomial of k[X] which is zero at all points of V(I),
i.e. q ∈ I V(I). Then qs ∈ I for some integer s > 0.
Concrete form: If q, p1, . . . , pm ∈ k[X] and q vanishes whenever
p1, . . . , pm do then there exist s > 0 and q1, . . . , qm ∈ k[X] such
that

qs = q1p1 + · · ·+ qmpm.
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Equivalent form: V(I) = ∅ if and only if 1 ∈ I (i.e. I = k[X]).
Concrete form: A simultaneous system of polynomial equations:

p1(x1, . . . , xn) = 0
p2(x1, . . . , xn) = 0

...
pm(x1, . . . , xn) = 0

does not have a simultaneous solution if and only if

1 = q1p1 + · · ·+ qmpm

for some q1, . . . , qm ∈ k[X].
Note: Nullstellensatz definitely false if k not algebraically closed:
consider p = x2 + 1 ∈ R[x].
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Gröbner Bases

Polynomial Ideal Membership: Given polynomials
q, p1, . . . , pm ∈ k[X] is

q ∈ (p1, . . . , pm)?

Answer: Compute Gröbner basis G of (p1, . . . , pm). Return yes if q
reduces to 0 w.r.t. G else no.
Observation: p1, . . . , pm have simultaneous solution if and only if
G does not contain a non-zero constant.
Fact: Gröbner basis of an ideal is a canonical form for it provided
basis is normed and reduced.
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[X] denotes set of all power products in indeterminates of X:

xe1
1 xe2

2 · · · xen
n .

Example of a monoid.
Take

F = { p1, . . . , pm }.

By definition
q ∈ (F)

if and only if
q = p1q1 + · · ·+ pmqm,

for some q1, . . . , qm ∈ k[X].
Equivalently

q = c1f1s1 + · · ·+ crfrsr,

where ci ∈ k, fi ∈ F, si ∈ [X] for 1 ≤ i ≤ r.
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Definition: Write
g→F h

to mean
h = g− cfs

for some c ∈ k, f ∈ F and s ∈ [X].
▶ Like a division step.

Say that g reduces to h w.r.t. F.
Rephrasing: q ∈ (F) if and only if there is sequence

q = q1 →F q2 →F · · · →F qr = 0.

Problem: Infinitely many choices at each reduction step.
Possible solution: Introduce suitable order on power products &
avoid reductions that introduce bigger power products than
previously seen.
Try to ‘squeeze’ q down to 0.
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In trying to find a reduction

qi →F qi+1

aim to kill at least one power product of qi (might introduce some
new smaller ones into qi+1).

1. Pick victim power product v from qi (could always take
largest).

2. Find some f ∈ F whose leading power product u divides v, i.e.

v = ut, for some t ∈ [X].

3. Now
qi →F qi −

coeff(v, qi)

lc(f) ft

Assumption: Multiplication by power products respects order
(u > v⇒ ut > vt).
Call a sequence of such reductions restricted (previous type called
unrestricted).
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Note: At each step have only finitely many possible reductions
(assuming ordering is reasonable).
Moreover there are no infinite chains of reductions (not obvious).
Algorithm: Given q,F construct the finite tree. If any leaf holds 0
then q ∈ (F) else q ̸∈ (F).
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Take
p1 = y− 1,
p2 = x,
q = xy + x.

Then, for any sensible order:

xy + x→p1 (xy + x)− x(y− 1)
= 2x
→p2 2x− 2x
= 0

Conclusion: xy + x ∈ (y− 1, x).
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Take
p1 = y + 1,
p2 = xy,
q = x.

Order: any admissible (e.g., lexicographic with x <L y).
Clearly: no reductions apply to q.
Conclusion: q ̸∈ (p1, p2).
Alas

q = xp1 − p2

so
q ∈ (p1, p2).

Source of error: We really do have that if q reduces to 0 (by
restricted sequence) then q ∈ (F). But we did not prove the
converse. (Of course OK if unrestricted reductions allowed.)
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Basic problem: Unrestricted reduction sequence can introduce
power products of any order which are cancelled later on.
Idea: Change basis for ideal to avoid cancellation difficulty.
Want: New finite basis G of (F) such that if q reduces to 0 by
unrestricted reduction sequence (w.r.t. F or G) then same happens
via restricted reduction sequence (w.r.t. G).
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Lemma: Suppose f→F g then f ∈ (F) if and only if g ∈ (F).
Corollary: Suppose f1 →F f2 →F · · · →F fn then f1 ∈ (F) if and
only if fn ∈ (F).
Observation: 0 ∈ (F) so if we get to 0 this is a proof that the
starting polynomial is in (F).
Question: When can the restricted reductions idea go wrong?

1. f1 ̸∈ (F): all reduction sequences will stop at a non-zero
polynomial. This is correct.

2. f1 ∈ (F):
i. Reduce to 0, this is fine it proves that f1 ∈ (F).
ii. Reductions stop with g and g ̸= 0; this is wrong, it implies that

f1 ̸∈ (F) in our algorithm.

Bright idea: Suppose basis G of (F) has the property that

f ∈ (F) & f ̸= 0⇒ lpp(p) | lpp(f), for some p ∈ G.

Then 2.ii cannot happen.
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Question: Does such a G exist?
Answer: Yes.
Sketch proof:

▶ Consider ideal L generated by all leading power products of all
elements of (F):

L =
(
{lpp(f) | f ∈ (F), f ̸= 0}

)
.

▶ Take finite basis M of L—existence guaranteed by Hilbert’s
Basis Theorem (can assume M consists of power products).

▶ Now take any finite subset G of (F) whose leading power
products include all those of M.

▶ G is desired basis.
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Given that G exists how can we compute it?

Pseudo-Algorithm: Gr(F) 7→ G
1. G := F;
2. Try to create new element p ∈ (F) such that

lpp(g) ̸ | lpp(p)
for all g ∈ G.

3. if (no such p can be created) then return G
else G := G ∪ { p }; goto 2
fi

111 / 151



All elements of (G) have form:

c1f1s1 + · · ·+ crfrsr,

where ci ∈ k, fi ∈ G, si ∈ [X].
If all fi = f, say then nothing new. Must use at least take two
different fi:

c1f1s1 + c2f2s2.

Bit of thought leads to:

spol(f, g) = 1
lc(f1)

· lcm(lpp(f1), lpp(f2))
lpp(f1)

· f1

− 1
lc(f2)

· lcm(lpp(f1), lpp(f2))
lpp(f2)

· f2.

Reduce w.r.t. G as far as possible to get h. If h = 0 then nothing
new. Else put h into basis.
Fact: Eventually all such polynomials reduce to 0, i.e. process
stops.
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Definition and Characterization of Gröbner Bases

Admissible ordering on [X]: must satisfy
1. 1 < t, for all t ∈ [X]− {1}.
2. s < t⇒ su < tu, for all s, t, u ∈ [X].

Lemma: Let ≤ be any admissible ordering. Then
1. s | t⇒ s ≤ t for all s, t ∈ [X].
2. There are no infinite decreasing sequences

(Noetherianity).
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Lexicographic Ordering: order indeterminates, e.g.

x1 >L x2 >L · · · >L xn.

Then
xi1

1 · · · xin
n >L xj1

1 · · · xjn
n

iff there is an r s.t. il = jl for 1 ≤ l < r and ir > jr.
Graduated Lexicographic Ordering: put

s <G t⇐⇒deg(s) < deg(t) or
deg(s) = deg(t) and s <L t.

Second ordering also called total degree then lexicographic.
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Notation
Given: f ∈ k[X]− {0}.
Leading power product:

lpp(f) = max<{ t ∈ [X] | coeff(t, f) ̸= 0 }.

Leading coefficient:

lc(f) = coeff(lpp(f), f).

Initial term: (or initial monomial)

in(f) = lc(f) lpp(f).

Extend to sets: For F ⊆ k[X] put

lpp(F) = { lpp(f) | f ∈ F, f ̸= 0 },
in(F) = { in(f) | f ∈ F, f ̸= 0 }.
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Definition: J a non-zero ideal of k[X]. Finite subset G of J− {0} is
a Gröbner basis for J if (

in(G)
)
=

(
in(J)

)
.

Just a compressed way of saying:
For all f ∈ J with f ̸= 0 there is a g ∈ G such that
lpp(g) | lpp(f).

Observations:
1. Finite subset G ⊆ J− {0} is a Gröbner basis for J iff

lpp(J) = lpp(G) · [X].
2. Every ideal J of k[X] has a Gröbner basis.
3. If G is a Gröbner basis for J and f ∈ J then G ∪ {f} is a

Gröbner basis for J.
4. G is a Gröbner basis for J iff (lpp(G)) = (lpp(J)).
5. Not every basis for an ideal is a Gröbner basis.
6. Any set of monomials { c1t1, . . . , cmtm } is a Gröbner basis for

the ideal it generates.
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Definition: Reduction relation →F as before.
→∗

F means apply →F zero or more times.
Theorem: →∗

F always terminates.
Example:

f1 = x2y2 + y− 1,

f2 = x2y + x,
F = { f1, f2 } ⊆ Q[x, y].

Order is lexicographic with x <L y:

2 x2y3︸︷︷︸
s

+x2y + 1→f1 (2x2y3 + x2y + 1)− 2yf1

= −2y2 + x2y︸︷︷︸
s

+2y + 1

→f2 (−2y2 + x2y + 2y + 1)− 1 · 1 · f2
= −2y2 + 2y− x + 1.
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Definition: Given f, g ∈ k[X].

spol(f, g) = 1
lc(f) ·

lcm(lpp(f), lpp(g))
lpp(f) · f

− 1
lc(g) ·

lcm(lpp(f), lpp(g))
lpp(g) · g.

Example:
f = 2x2y + 3x2 + 1,
g = 3xy2 − 2x.

Then

x2y2

↙f ↘g
(1/2)y(3x2 + 1) (1/3)x(−2x)

Difference of new polynomials is spol(f, g).
118 / 151



Computation of Gröbner Bases

GRÖBNER_BASIS(F) 7→ G
(F and G are finite sets of polynomials, (F) = (G) and G is a
Gröbner basis for (F).)
G := F;
while not all S-polys of G have been considered do

choose a new spol(f, g);
compute a normal form h of it w.r.t. G;
if h ̸= 0 then G := G ∪ {h} fi

od
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GRÖBNER_BASIS(F) 7→ G
(F and G are finite sets of polynomials, (F) = (G) and G is a
Gröbner basis for (F).)
let F = { f1, f2, . . . , fm };
P := {(fi, fj) | 1 ≤ i < j ≤ m};
G := F;
while P ̸= ∅ do

remove a pair (f, g) from P;
compute a normal form h of spol(f, g) w.r.t. G;
if h ≠ 0 then

P := P ∪ {(h, p) | p ∈ G};
G := G ∪ {h}

fi
od
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Example: f1 = x2y2 + y− 1, f2 = x2y + x.
Order: Lexicographic with x <L y.

1. spol(f1, f2) = f1 − yf2 = −xy + y− 1. Irreducible.

f3 = −xy + y− 1, G = {f1, f2, f3}.

2. spol(f2, f3) = f2 + xf3 = xy→f3 y− 1. Put

f4 = y− 1, G = {f1, f2, f3, f4}.

3. spol(f3, f4) = f3 + xf4 = −x + y− 1→f4 −x. Put

f5 = −x, G = {f1, f2, f3, f4, f5}.

4. spol(f1, f3) = f1 + xyf3 = xy2 − xy + y− 1→G 0.
5. spol(f2, f4) = f2 − x2f4 = x2 + x→G 0.

Output:

G = {x2y2 + y− 1, x2y + x, −xy + y− 1, y− 1, −x}.

In fact {x, y− 1} is a Gröbner basis for {f1, f2}.
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Theorem: Let G be a Gröbner basis for an ideal I of K[X]. Let
g, h ∈ G with g ̸= h. Then

1. If lpp(g) | lpp(h) then G′ = G− {h} is also a Gröbner basis
for I.

2. If h→G−{h} h′ then G′ = (G− {h}) ∪ {h′} is also a Gröbner
basis for I.

Remarks:
▶ G is minimal iff lpp(g) ̸ | lpp(h) for all g ̸= h ∈ G.
▶ G is reduced iff for all h ̸= g ∈ G, h cannot be reduced by g.
▶ G is a normed basis if lc(f) = 1 for all f ∈ G.

Theorem: A normed reduced basis for an ideal I is unique.
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Applications of Gröbner Bases
Very many applications exist.
Ideal Membership: Given an ideal I = (f1, . . . , fs) and a polynomial
f is f ∈ I?
Solution: Compute a Gröbner basis G for I. Then

f ∈ I⇐⇒ f→∗
G 0.

Solution of Equations: Hilbert’s Nullstellensatz says:

p1(x1, . . . , xn) = 0
p2(x1, . . . , xn) = 0

...
pm(x1, . . . , xn) = 0

does not have a simultaneous solution (over C) iff

1 ∈ (p1, p2, . . . , pm).
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For any ideal I

1 ∈ I⇔ a ∈ G, a ∈ C− { 0 }, G any Gröbner basis of I,
⇔ N = { 1 }, N the normed Gröbner basis of I.

Less obvious:
Theorem: A system of polynomial equations has finitely many
solutions over C if and only if each indeterminate appears in the
form cxd, where c is a constant, as the initial term of one of the
members of the reduced Gröbner basis of polynomials where the
basis is computed w.r.t. a lexicographic ordering.

Diagonalization of system—cf. Gaussian elimination for linear
equations.
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Suppose x1 >L x2 >L · · · >L xn. Theorem says there are finitely
many solutions if and only if lexicographic Gröbner basis has a
subset that looks like:

c1xd1
1 + p1(x1, x2, . . . , xn)

c2xd2
2 + p2(x2, . . . , xn)

. . .
cnxdn

n + pn(xn)

where ci ̸= 0, for 1 ≤ i ≤ n.
Note: This includes possibility that di = 0. Then ith polynomial is
just ci ̸= 0 so system has 0 solutions.
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Example:
f = 3x2y + 2xy + y + 9x2 + 5x− 3,
g = 2x3y− xy− y + 6x3 − 2x2 − 3x + 3,
h = x3y + x2y + 3x3 + 2x2.

Use lexicographic order with x >L y, basis:
{ 21− 16y− 3y2 + 2y3, 8x− 2y2 + 5y + 3 }.

Solutions:
(−3/8− 5/8a + 1/4a2, a)

with a a root of 21− 16y− 3y2 + 2y3.
Example:

f = (y− 1)x + y− 1,
g = y2 − 1.

Use lexicographic order with x >L y, basis:
{ y2 − 1, xy− x + y− 1 }.

Infinitely many solutions.
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Cost of Method

Question: If q ∈ (p1, . . . , pm) what degrees can occur for
q1, . . . , qm of minimal degree so that q = q1p1 + · · ·+ qmpm?
Fact: For infinite fields, degree is at most double exponential in
number n of indeterminates. Moreover this is necessary for certain
examples.
Given Gröbner basis for (p1, . . . , pm) then, assuming
q ∈ (p1, . . . , pm), can find q1, . . . , qm for little extra cost.
Conclusion: Double exponential space lower bound applies to
construction of Gröbner bases.
But: Algorithm runs fine with very many examples of interest.
Moral: Only use it if you really need to—can’t use it as a matter
of course.
Suggested Exercise: 6.5.
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Real Roots of Polynomials

Given: p(x) ∈ Q[x], p(x) ̸= 0.
Find: All real roots of p(x).
Want: Absolute reliability—rules out Newton-Raphson etc.
Fourier’s approach:

Isolation: find open intervals s.t. each one contains exactly one
real root of p and each real root of p is contained in
an interval.

Approximation: shrink each interval to approximate root it
contains to desired degree of accuracy.
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Real Root Approximation
Note:

▶ p has no root in (a, b) ⇒ p doesn’t change sign in (a, b).
▶ Converse false: e.g., p = x2, (a, b) = (−1, 1).

Theorem: If p is square free then it has a root in (a, b) iff it
changes sign.
Computing square-free part:

p(x) =
r∏

i=1
pi(x)i, each pi square free, possibly some pi = 1.

p′(x) =
r∑

i=1
ipi(x)i−1p′i(x)

∏
j ̸=i

pj(x)j.

r(x) = gcd(p(x), p′(x)) =
r∏

i=2
pi(x)i−1.

p(x)/r(x) =
r∏

i=1
pi(x) = p/ gcd(p, p′).

129 / 151



Subtlety: Method used is over Q[x]. But want square-free part of
p as element of R[x].
Theorem: Let D, D′ be integral domains with D a subdomain of
D′. Suppose f, g ∈ D[x] have a non-constant common factor in
D′[x], then they have a non-constant common factor in D[x].

More straightforwardly: the Euclidean Algorithm shows that the
result of computing r(x) is unchanged if we work over Q or R.
Reason:

▶ The algorithm uses the coefficients of the input polynomials
and just adds, subtracts, multiplies (or divides) by them.

▶ No other field elements are used.
▶ So if the coefficients come from a field k the whole

computation stays in k.
Conclusion: If a property can be defined in terms of gcd and
standard ring operations it is very robust, i.e., if k is a subfield of
k′ and f ∈ k[x] then f has the property in k′[x] if and only if it has
it in k[x].
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APPROX(p(x), a, b, ϵ) 7→ A
(A is either the exact root of p contained in (a, b) or an interval (c, d)
which isolates the same root and satisfies d− c < ϵ.)
q(x) := SQFPART(p);
if q(a) = 0 then q(x) := q(x)/(x− a) fi;
if q(b) = 0 then q(x) := q(x)/(x− b) fi;
c := a;
d := b;
m := (c + d)/2;
while d− c ≥ ϵ do

if q(m) = 0 then return m fi;
if sign(q(c)) ̸= sign(q(m)) then

d := m; m := (c + d)/2
else c := m; m := (c + d)/2
fi

od;
A := (c, d)
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Real Root Isolation

ISOL(p(x), a, b) 7→ [E, A]
(p(x) is square free. E is a list of (some of the) exact roots of p(x) which
lie in (a, b) and A is a list of isolating intervals for the rest of the roots of
p(x) in (a, b).)

1. E := [ ]; A := [ ];
r := RCOUNT(p(x), a, b);

2. if r = 0 then return [[ ], [ ]]
elif r = 1 then return [[ ], [(a, b)]]
fi;

3. W := [[a, b, r]]; (to be explored further)
4. while W ̸= [ ] do

remove the first element [c, d, r] from W;
m := (c + d)/2;
if p(m) = 0 then

E := [op(E), m];
p(x) := p(x)/(x − m)

fi;
r := RCOUNT(p(x), a, m);
if r = 1 then A := [op(A), (a, m)]
elif r > 1 then W := [op(W), [a, m, r]]
fi;
r := RCOUNT(p, m, b);
if r = 1 then A := [op(A), (m, b)]
elif r > 1 then W := [op(W), [m, b, r]]
fi;

od
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Bounding the Real Roots
Two theorems by Cauchy.
Theorem: Let

p(x) = amxm + am−1xm−1 + · · ·+ a0

be a polynomial with complex coefficients where m ≥ 1 and
am ̸= 0. Then any root α of p satisfies

|α| < 1 +
max{ |a0|, . . . , |am−1| }

|am|
.

Theorem: Let
p(x) = amxm + am−1xm−1 + · · ·+ a0

be a polynomial with real coefficients where m ≥ 1, am > 0 and
which has λ > 0 strictly negative coefficients. Put

B = max

{∣∣∣∣∣λam−i
am

∣∣∣∣∣
1/i ∣∣∣ 1 ≤ i ≤ m & am−i < 0

}
.

Then every positive real root of p is no larger than B.
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Counting Real Roots of Univariate Polynomials

Sequence Variation
2, −1, −2, 3, 3 2
2, 0, −1, 0, 0, −2, 3, 3, 2
−1, −10, 0, −3, 0, 1, 2, 0, 3 1

0, 3, −1, 2, 0, −4, 5, 0, −6 5

S = x3 − 7x + 7, 3x2 − 7, 2x− 3, 1.
x Sequence VS(x)
−1 13, −4, −5, 1 2

0 7, −7, −3, 1 2
1/2 29/8, −25/4, −2, 1 2

1 1, −4, −1, 1 2
3/2 −1/8, −1/4, 0, 1 1

2 1, 5, 1, 1 0

Note: VS(x) cannot change as x varies unless x passes through a
root of some polynomial of S.
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Suppose
S = p0(x), p1(x), . . . , pm(x)

all polynomials non-zero. Then (a, b) has only finitely many
numbers that are roots of some pi(x). So can cut up as:

ba

an−2 anan−1a3a2a1

VS(a)− VS(b) =
n−1∑
i=1

VS(ai)− VS(ai+1).
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Suppose
VS(ai)− VS(ai+1) ≥ 1

when (ai, ai+1) contains a root of some pi(x). Then

number of such roots in (a, b) ≤ VS(a)− VS(b).

Given p(x) suppose can find sequence S s.t.

VS(ai)− VS(ai+1) =

{
1, if p(x) has a root in (ai, ai+1);

0, otherwise.

Conclusion:

number of roots of p(x) in (a, b) = VS(a)− VS(b).
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Sturm Sequences
Assume p(x) square free.

Sturm(p) = p0(x), p1(x), . . . , pn(x)
defined by

p0(x) = p(x),
p1(x) = p′(x),
pi(x) = −remainder(pi−2(x), pi−1(x)), for i ≥ 2.

Euclidean algorithm with negative remainders.
Stop when non-zero constant reached

p0(x) = p1(x)q1(x)− p2(x)
p1(x) = p2(x)q2(x)− p3(x)

...
pn−2(x) = pn−1(x)qn−1 − pn(x)

So
pn(x) = gcd(p0(x), p1(x) = non-zero constant.
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Properties of Sturm Sequences

1. If α a real root of p(x) then for a sufficiently small ϵ, p(x) and
p′(x) have opposite sign for all x ∈ (α− ϵ, α) and the same
sign in (α, α+ ϵ).
(True even if p(x) not square free.)

2. Two consecutive elements of the sequence cannot vanish at
the same point.

3. If pi(α) = 0 for some i with 0 < i < n then pi−1(α) and
pi+1(α) have opposite signs.

Sturm’s Theorem (1835): Let p(x) be square free and let a, b be
two real numbers. Then the number of real roots of p(x) in the
interval (a, b] is VS(a)− VS(b) where S = Sturm(p).
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Counting all Real Roots
Given p(x) ̸= 0.
(−a, a) contains all roots of p(x) for all large enough a.
Obervation: for all large enough a > 0

sign(p(a)) = sign(lc(p)),

sign(p(−a)) =
{

sign(lc(p)), if deg(p) even;
− sign(lc(p)), if deg(p) odd.

Conclusion: for S = Sturm(p) = p1, p2, . . . , pn
▶ VS(a) is variation in lc(p1), lc(p2) . . . , lc(pn); denoted VS(∞).
▶ VS(−a) is variation in ϵ1 lc(p1), ϵ2 lc(p2) . . . , ϵn lc(pn) where

ϵi =

{
1, if deg(pi) even;
−1, if deg(pi) odd,

denoted VS(−∞).
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Real Root Isolation by Continued Fractions

Method for isolating positive roots of p(x).
Negative roots are positive roots of p(−x).
Subdivide positive roots into: (0, 1), 1, (1,∞).
Express roots in (0, 1) as

1
1 + y , for y > 0.

To find all y clear denominator in p(1/1 + y) to get polynomial
pI(y).
Express roots in (1,∞) as

1 + y, for y > 0.

To find all possible y put pT(y) = p(1 + y).
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Example: p(x) = x3 − 7x + 7. By inspection 1 is not a root.

pI(y) = 7y3 + 14y2 + 7y + 1.

Can’t have any positive roots.

pT(y) = y3 + 3y2 − 4y + 1.

By inspection 1 is not a root of pT(y).

pTI(z) = z3 − z2 − 2z + 1,
pTT(z) = z3 + 6z2 + 5z + 1.

pTT(z) has no positive roots so pT(y) has no roots in (1,∞).
By inspection 1 is not a root of pTI(z). For roots in (0, 1):

pTII(w) = w3 + w2 − 2w− 1.

For roots in (1,∞):

pTIT = w3 + 2w2 − w− 1.

Both have unique positive root.
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w3 + w2 − 2w − 1 w3 + 2w2 − w − 1

z3 − z2 − 2z + 1 z3 + 6z2 + 5z + 1

y3 + 3y2 − 4y + 17y3 + 14y2 + 7y + 1

x3 − 7x + 7

TI

TI

TI

Positive roots of x3 − 7x + 7 isolated by (1, 3/2) and (3/2, 2).
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Möbius Transforms

M(x) = a1x + a0
b1x + b0

, a1b0 − a0b1 ̸= 0.

Transform p(x) to

pM(x) = p(M(x)) · (b1x + b0)
m, m = deg(p).

1. pM(α) = 0⇔ p(M(α)) = 0 if b1α+ b0 ̸= 0.
2. a1b0 − a0b1 > 0 ⇒ M(x) strictly increasing.
3. a1b0 − a0b1 < 0 ⇒ M(x) strictly decreasing.

Conclusion: If (a, b) isolates a root of pM(x) then interval with
endpoints M(a), M(b) isolates corresponding root of p(x).
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Theorem: (Vincent, 1836) Let p(x) be a square free polynomial
with rational coefficients. Consider a sequence of transformations
of p(x) by

x 7→ a1 +
1
x , x 7→ a2 +

1
x , x 7→ a3 +

1
x , . . .

where a1 is an arbitrary non-negative integer and a2, a3, . . . are
arbitrary positive integers. Then after finitely many steps the
sequence of coefficients of the transformed polynomial has either
zero or one sign variation.
Theorem: Let p(x) be a polynomial with real coefficients that have
exactly one sign variation. Then p(x) has exactly one positive real
root.
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Speeding Things Up

Instead of
x 7→ 1 + x

use
x 7→ b + x

with b a good estimate of integer part of smallest positive root of
p(x).
Computing b: Use 2nd theorem of Cauchy to find upper bound B
on positive roots of xmp(1/x). Take b = ⌊1/B⌋.
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Theorem: (Budan,1807) Let p(x) be square free of degree m > 0
and let a, b be two real numbers with a < b. Let Va, Vb be the
variation of the coefficients of p(a + x), p(b + x) respectively. Let r
be the number of real roots of p(x) in (a, b). Then

1. Va ≥ Vb.
2. r ≤ Va − Vb.
3. (Va − Vb)− r is an even number.

Corollary: If the coefficients of q(x) and q(1 + x) have the same
number of sign variations then q(x) has no roots in (0, 1).
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CFISOL(p(x)) 7→ [E,A]
(p(x) is square free. E is a list of (some of the) exact non-negative roots of p(x) and A is a list of
isolating intervals for the rest of the non-negative roots of p(x).)

1. if p(0) = 0 then
E := [0]; A := [ ]; pw(x) := p(x)/x

else E := [ ]; A := [ ]; pw(x) := p(x)
fi;

2. v := VAR(pw(x));
if v > 1 then T := [[pw(x), x, v]] (work to be done)
elif v = 1 then

T := [ ];
u := UBPR(pw(x));
if pw(u) = 0 then E := [op(E), u]
else A := [(0, u)]
fi

fi;

147 / 151



3. while T ̸= [ ] do
remove the first element [pM(x), M(x), vM] from T;
b := LBPR(pM(x));
if b ≥ 1 then

pM(x) := Moebius(pM(x), b + x);
M(x) := M(b + x);
if pM(0) = 0 then

E := [op(E), M(0)]; pM(x) := pM(x)/x
fi;

fi;
v1 := vM;
pM1 := Moebius(pM(x), 1 + x);
M1 := M(1 + x);
if pM1 (0) = 0 then

E := [op(E), M1(0)]; pM1 (x) := pM1 (x)/x
fi;
vM1 := VAR(pM1 );
if vM1 > 1 then T := [[pM1 (x), M1(x), vM1 ], op(T)]

elif vM1 = 1 then
A := [op(A), make_interval(pM1 (x), M1(x))]

fi;
if v1 ̸= vM1 then (pM(x) might have roots in (0, 1))

pI(x) := Moebius(pM(x), 1/x);
if lc(pI(x)) < 0 then pI(x) := −pI(x) fi;
MI := M(1/x);
pM1 := Moebius(pI(x), 1 + x);
M1 := MI(1 + x);
vM1 := VAR(pM1 (x);
if vM1 > 1 then T := [[pM1 (x), M1(x), vM1 ], op(T)]

elif vM1 = 1 then
A := [op(A), make_interval(pM1 (x), M1(x))]

fi
fi

od
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Random polynomials with coefficients in [−99, 99]. Time in µs.
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Collins-Krandick polynomials, An = xn − 2(x2 − 3x + 1)2.
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Random compared with Collins-Krandick polynomials.
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