
6 Gröbner Bases

We are all familiar with the notion of simultaneous linear equations such as

a11x1 + a21x2 = b1

a12x1 + a22x2 = b2

where the aij represent elements of some field (e.g., R). There are well known simple conditions
on the aij for these equations to have a solution for x1, x2. In fact we can state straightforward
conditions for the existence of solutions to systems of m equations in n unknowns. Our interest
here is to look at a more wide reaching generalization.

6.1 Basics of Algebraic Geometry

Consider polynomials p1(x1, . . . , xn), . . . , pm(x1, . . . , xn) in the indeterminates X = {x1, . . . , xn}
with coefficients from some field k. The variety corresponding to these polynomials is the set of
their common zeros5. To be more precise it is the subset V(p1, . . . , pm) of kn defined by

V(p1, . . . , pm) = { (a1, . . . , an) ∈ kn | pi(a1, . . . , an) = 0, for 1 ≤ i ≤ n }.

For example if k = R and n = 2 then V(x2 +y2−1) is a circle of radius 1 and centre at the origin in
ordinary 2-dimensional space. Similarly V(x2 + y2 − 1, x− y) consists of the points of intersection
of the circle and the line y = x. Note that V(x2 + y2 + 1) is empty for k = R but on the other
hand V(x2 + y2 + 1) has infinitely many points if k = C.

The definition of a variety can be extended to arbitrary (possibly infinite) subsets S of k[X]:

V(S) = { (a1, . . . , an) ∈ kn | p(a1, . . . , an) = 0, for all p ∈ S }.

Suppose that p1, . . . , ps ∈ S and q1, . . . , qs ∈ k[X]. Put

q = q1p1 + · · ·+ qsps.

Then it is clear that for any (a1, . . . , an) ∈ V(S) we have

q(a1, . . . , an) = 0.

Thus
V(S ∪ {q}) = V(S).

Indeed we can add any set of polynomials such as q to S without changing the variety we obtain.
This observation motivates the notion of an ideal generated by a set S. This is denoted by (S) and
is defined by

(S) = { q1p1 + · · ·+ qsps | s ≥ 1, qi ∈ k[X], pi ∈ S, for 1 ≤ i ≤ s }.

This definition is made clearer by seeing it in operational terms: the elements of the ideal (S) are
built by taking one or more elements of S, an equal number of arbitrary polynomials from k[X] then,
multiplying and adding up as shown. For example if S contains the polynomials p1 = x2y + x− 1

5Some authors use the term algebraic set and reserve the term variety for a special kind of algebraic set.
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and p2 = xy2 + y− 1 then the ideal (S) has amongst its (infinitely many) elements the polynomials
x− y and 3x2y3 + 2x3y+ 3xy2 + 2x2− 3y2− 2x since the first of these is yp1−xp2 while the second
is (2x + 3y2)p1. Note that if S is a finite set, say S = {p1, p2, . . . , pm}, then we can simplify the
definition to

(S) = { q1p1 + · · ·+ qmpm | qi ∈ k[X], for 1 ≤ i ≤ m }.

(Make sure you understand why this is so.) Furthermore it is clear that if f1, f2 ∈ (S) then
f1g1 + f2g2 ∈ (S) for all g1, g2 ∈ k[X]. The preceding discussion shows that

V
(
S
)

= V
(
(S)
)
.

The abstract definition of ideals is: a subset I of k[X] is an ideal if it is not empty and for all
q ∈ k[X] and p1, p2 ∈ I we have p1q ∈ I and p1 − p2 ∈ I.

Note that although we have defined ideals in k[X] exactly the same definition applies to arbitrary
commutative rings. Thus it makes sense to talk about ideals in Z. In fact Z is an example of a
prinicipal ideal domain, these are integral domains for which every ideal is generated by a single
element. Another example of a principal ideal domain is k[x], i.e., polynomials in one indeterminate
with coefficients from a field. An interesting property of these domains is that any ideal (a1, . . . , an)
is the same as (d) where d is any gcd of a1, . . . , an.

Exercise 6.1 Show that:

1. S ⊆ (S) for all S ⊆ k[X].

2. If an ideal I contains a non-zero constant (i.e., a non-zero element of k) then I = k[X].

3. 0 is an element of every ideal.

4. f ∈ (g) if and only if g | f .

5. f − g ∈ I if and only if f ∈ I where I is an ideal of k[X], g ∈ I and f ∈ k[X].

6. In the abstract definition of ideals we can replace the condition p1 − p2 ∈ I by p1 + p2 ∈ I
without causing any change to what is meant by an ideal.

7. The abstract definition of ideals agrees with the version we introduced first, i.e., if I is an
abstract ideal then there is an S such that I = (S). Conversely (S) satisfies the abstract
definition of ideals.

Exercise 6.2 Let I be an ideal of k[x], note the single indeterminate here. Show that for all
p1, p2 ∈ I we have gcd(p1, p2) ∈ I. Deduce that there is a single polynomial p such that I = (p) (in
technical terms this says that k[x] is a principal ideal domain).

(An alternative way to prove that I = (p) is to choose p to be an element of I of least possible
degree then prove that p divides every other member of I.)

Exercise 6.3 Let D be a principal ideal domain (see above for the definition) and let a1, . . . , an ∈
D.

• Choose d such that (a1, . . . , an) = (d). Prove that d is a gcd of a1, . . . , an, where the definition
of gcd is the obvious generalisation of the one given for pairs of elements.
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• Suppose d is a gcd of a1, . . . , an. Prove that (a1, . . . , an) = (d).

At first sight the move from a finite set of polynomials to an infinite set might seem a little
retrograde. In order to give a hint of the power of the idea consider:

p1 = x+ y − 2z − 1,

p2 = 2x− 3y − z + 2,

p3 = x− y + z,

where the coefficients are from Q and let I = (p1, p2, p3). Now

p4 = p2 − 2p1 = −5y + 3z + 4,

is a member of I. Therefore

p5 = p3 − p1 − 2/5p4 = 9/5z − 3/5,

is also a member of I. Thus
(p1, p4, p5) ⊆ I.

In fact we can easily express p2, p3 as linear combinations of p1, p4, p5 so that

I = (p1, p4, p5).

Thus
V (I) = V (p1, p2, p3)

= V (x+ y − 2z − 1,−5y + 3z + 4, 9/5z − 3/5)

and of course the final set of equations is very easy to solve since it is in triangular form.
As another example consider

S = {x3yz + x+ 1, xy2z + 1, x2y2 + z2} ⊂ C[x, y, z].

It is not immediately obvious that these equations even have any simultaneous solutions let alone
what such solutions look like. However we can show that

(S) = (x− z3, y + z15 − z12 + z9 − z6 + z5 + z2, z16 + z6 + 2z3 + 1)

We can now solve for z using the last polynomial, each value of z fixes the value of x and y.
Finally consider the polynomials

f1 = x2 + y2 − 1,

f2 = xy − 1,

f3 = x2 − y2 − 1,

from C[x, y]. Now the polynomial

f = (−xy + y2 + 2)f1 + (−2xy + 2x2 − 4)f2 + (y2 − xy)f3,

is a member of (f1, f2, f3) so that V(f1, f2, f3) = V(f, f1, f2, f3). However f = 2 and so it follows
that V(f, f1, f2, f3) = ∅.
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The preceding examples show that a suitable change in the generating set of an ideal can give
us a great deal of insight into the the variety that it defines. In terms of linear equations a version
of this process is very familiar under the guise of Gaussian elimination. Can we find a systematic
approach to the general situation? The aim of this section is to show that we can indeed do this.

Given an arbitrary ideal I we say that S is a basis of I if I = (S). One of the major questions of
nineteenth century algebra was: does every ideal have a finite basis?, i.e., given any ideal I are there
finitely many polynomials p1, . . . , pm such that I = (p1. . . . , pm)? The significance of this question
is easier to appreciate if we phrase it geometrically. Suppose that we define figures in n dimensional
space by means of infinitely many polynomial equations. Are there finitely many equations which
give us precisely the same figures?

For n = 1 it is easy to provide an affirmative answer to the question (we rely on our old
friend the Euclidean algorithm—see Exercise 6.2). The case n = 2 was settled by Gordan, also
in the affirmative. Unfortunately his proof involved very lengthy algebraic calculations. Despite
much effort by many mathematicians all attempts to generalize Gordan’s proof got bogged down in
excessive calculations. It was therefore a major surprise when Hilbert published a very short note
which settled the question for all values of n:

Theorem 6.1 (Hilbert’s Basis Theorem, 1888) Every ideal of k[X] has a finite basis.

Hilbert’s method of proof was so revolutionary that many mathematicians doubted that it was even
mathematics. Indeed Gordan’s reaction was: ‘Das ist nicht Mathematik. Das ist Theologie’. This
type of reaction is explained by the fact that for most nineteenth century mathematicians proving
the existence of an object meant the demonstration of a method for finding that object. Hilbert on
the other hand simply demonstrated the existence of finite bases without showing how to find them.
Later on he produced a constructive proof based on his earlier non-constructive one. Hilbert’s new
approach was so powerful that it produced a major revolution in mathematical thinking. After
such a build-up the laws of show business6 demand that we give the

Proof of Hilbert’s Basis Theorem: We show that if R is a commutative ring with identity with
the property that every ideal of R is finitely generated then the same holds for the polynomial
ring R[x]. (Hilbert’s basis theorem as stated above then follows from induction on the number of
indeterminates and the fact that fields have only two ideals, viz. (0) and (1) both of which are
finitely generated.)

Let I be an ideal of R[x]. For each n ∈ N put

In = { a ∈ R | ∃ axn + an−1x
n−1 + · · ·+ a0 ∈ I }.

It is easy to see that In is an ideal of R and In ⊆ In+1. Now ∪n≥0In is also an ideal of R and so it
must be finitely generated. Using this fact we easily deduce that for some N ≥ 0 we have

IN = IN+1 = · · ·

(see Exercise 6.3). Of course each In for n ≤ N is also finitely generated by an1, an2, . . . , anmn
∈ R,

say. For each such generator we pick a polynomial fns = ansx
n + · · · ∈ J where n is the degree of

fns (such a polynomial exists by the definition of In). Now for the coup de grâce. We claim that

{fns | 0 ≤ n ≤ N, 1 ≤ s ≤ mi }
6Don’t bring a cannon on the stage unless you intend to fire it.
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generates I. To see this take any g ∈ I and suppose deg(g) = d (we can assume w.l.o.g. that g 6= 0).
Then g = bxd + (terms of lower degree). From what we know about Id we can write b =

∑
cd′jad′j

where d′ = d if d′ ≤ N otherwise d′ = N . Consider g1 = g−x(d−d′)
∑
cd′jfd′j . By construction the

coefficient of xd in g1 is 0 so that either g1 = 0 or deg(g1) < deg(g). If g1 = 0 we already have g as
a linear combination of the fns otherwise we are done by induction on d. 2

Exercise 6.4 A ring R is called Noetherian if every ascending chain of ideals terminates, i.e.,
whenever we have I1 ⊆ I2 ⊆ · · · where the Ij are ideals of R then there is an s such that Is =
Is+1 = · · ·. Use Hilbert’s Basis Theorem to deduce that k[X] is Noetherian. Conversely deduce
Hilbert’s Basis Theorem from the assumption that k[X] is Noetherian.

(The terminology is in honour of Emmy Noether who studied such rings very extensively.)

Exercise 6.5 A monomial ideal I is an ideal of form (S) where S ⊂ k[X] is a set of power products.
Assume that I = (S) is such an ideal.

1. Let s be a power product. Prove that s ∈ I if and only if s is divisible by a power product from
S.

2. Prove that that a polynomial f is in I if and only if each power product of f is in I.

3. Deduce that every monomial ideal has a finite basis consisting of power products.

We can view V as a function
Ideals→ Varieties.

There is an obvious function I in the opposite direction:

Varieties→ Ideals

which assigns to a variety V the ideal

I(V ) = { p | p ∈ k[X] & p(a1, . . . , an) = 0, for all (a1, . . . , an) ∈ V }.

(It is easy to verify that the set is indeed an ideal—try it.) For example a single point P =
(α1, α2, . . . , αn) ∈ kn is a variety, e.g., it is V(x1 − α1, x2 − α2, . . . , xn − αn). Let us determine its
ideal, i.e., I(P ). First of all it is clear that P is a zero of any polynomial of the form

(x1 − α1)g1 + (x2 − α2)g2 + · · ·+ (xn − αn)gn,

where g1, g2, . . . , gn ∈ k[x1, x2, . . . , xn] are arbitrary. Since the set of all such polynomials is precisely
the ideal (x1 − α1, x2 − α2, . . . , xn − αn) we conclude that this ideal is contained in I(P ). On the
other hand we know from the remainder theorem of §4.7.7 that for every f ∈ k[x1, x2, . . . , xn] we
have

f(x1, x2, . . . , xn)− f(α1, α2, . . . , αn) = (x1 − α1)g1 + (x2 − α2)g2 + · · ·+ (xn − αn)gn,

for some g1, g2, . . . , gn ∈ k[x1, x2, . . . , xn]. Now if f ∈ I(P ) then by definition f(α1, α2, . . . , αn) = 0
so that

f = (x1 − α1)g1 + (x2 − α2)g2 + · · ·+ (xn − αn)gn,

63



which means that f ∈ (x1 − α1, x2 − α2, . . . , xn − αn). Thus we have

I(P ) = (x1 − α1, x2 − α2, . . . , xn − αn).

Unfortunately, this example is not typical since determining the ideal of a general variety is by no
means an easy process.

Two obvious questions now arise:

1. is I = I V(I) for an arbitrary ideal I of k[X]?

2. is V = V I(V ) for an arbitrary variety V of kn?

In fact it is very easy to see that

1. I ⊆ I V(I) for all ideals I of k[X],

2. V ⊆ V I(V ) for all varieties V of kn,

and it can be shown that equality always holds in the second case but in general it does not hold
in the first case. To see that equality can fail in the first case consider the ideal generated by a
single polynomial of the form p2, where p 6= 0. It is clear that p is not a member of this ideal but
of course p vanishes at all points at which p2 vanishes. (Clearly we can replace the exponent 2 by
any integer s > 1.)

A remarkable theorem (again due to Hilbert) gives us a complete description of I V(I) provided
we assume that k is algebraically closed (i.e., every non-constant polynomial in one indeterminate
with coefficients from k has a root in k). The best known example of such a field is C, the field
of complex numbers. (It can be shown that every field k can be extended to a field k which is
algebraically closed—this is what we obtain in moving from R to C.) From now on we shall assume
that k is algebraically closed, unless we state otherwise.

Theorem 6.2 (Hilbert’s Nullstellensatz, 1893) Let k be algebraically closed, I an ideal of
k[X] and q a polynomial of k[X] which is zero at all points of V(I), i.e., q ∈ I V(I). Then
qs ∈ I for some integer s > 0.

In concrete terms the theorem says that if q, p1, . . . , pm are polynomials in k[X] and q vanishes
whenever p1, . . . , pm do then there exist s > 0 and polynomials q1, . . . , qm such that

qs = q1p1 + · · ·+ qmpm.

There are various equivalent forms of Hilbert’s Nullstellensatz one of which is: V(I) = ∅ if and only
if 1 ∈ I (which is the same as saying that I = k[X]). The concrete form of this version is that a
simultaneous system of polynomial equations:

p1(x1, . . . , xn) = 0

p2(x1, . . . , xn) = 0

...

pm(x1, . . . , xn) = 0

(10)

does not have a simultaneous solution if and only if

1 = q1p1 + · · ·+ qmpm
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for some polynomials q1, . . . , qm. This theorem does not hold if k is not algebraically closed: to see
this consider R and the polynomial p = x2 + 1. Clearly p does not have a root in R but pq 6= 1 for
any polynomial q.

For a modern proof of the Nullstellensatz see Reid [51]. This book is a very readable and
entertaining introduction Algebraic Geometry. For an equally entertaining read and more infor-
mation (at least on certain topics) see Abhyankar [1]. (N.B. The best forms of entertainment are
hard work for all the participants.) For a very down to earth proof of the Nullsetellensatz see
van der Waerden [62, Vol II].

Exercise 6.6 Let p, p1, . . . , pm ∈ k[X] and let z be a new indeterminate. Show that p vanishes
whenever p1, . . . , pm do, i.e., p ∈ I V(p1, . . . , pm), if and only if

1 ∈ (p1, . . . , pm, pz − 1).

6.2 Gröbner Bases

The preceding discussion shows that the following problem is very natural and important:

Polynomial Ideal Membership: Given polynomials q, p1, . . . , pm of k[X] is q ∈ (p1, . . . , pm)?

One algorithmic answer to this question lies in constructing certain special bases for ideals. The
construction of such bases was discovered by Buchberger in the mid 1960’s and he called them
Gröbner bases in honour of his supervisor. The fact that the algorithm terminates is a consequence
of Hilbert’s Basis Theorem. The Nullstellensatz and the nature of Gröbner Bases then tell us
that a simultaneous system of equations such as (10) has a solution if and only if the basis of the
polynomials does not contain a non-zero constant.

There are now quite a few survey articles on Gröbner bases, e.g., Buchberger [12], Pauer and
Pfeifhofer [48] or Mishra and Yap [45].

Before diving into the technical details we take a closer look at the problem and a possible
approach to its solution. It will be convenient to let [X] denote the set of all power products in the
indeterminates of X. We multiply elements of [X] in the obvious way. (In technical terms [X] is a
monoid , i.e., it satisfies the axioms of a group except for the requirement that each element must
have an inverse. The identity of [X] is x01 · · ·x0n which we denote by 1.) Let F = { p1, . . . , pm }. We
want to know if q ∈ (F ) and this is so if and only if

q = p1q1 + · · ·+ pmqm,

for some q1, . . . , qm ∈ k[X]. If we expand each product piqi by multiplying pi with each monomial
of qi then the preceding equation is equivalent to

q = c1f1s1 + · · ·+ crfrsr,

where ci ∈ k, fi ∈ F , si ∈ [X] for 1 ≤ i ≤ r (note that the fi and si need not all be different).
Let us write g →F h to mean that h = g − cfs for some c ∈ k, f ∈ F and s ∈ [X] (we say that g
reduces to h). Then q ∈ (F ) if and only if there is a sequence of reductions

q = q1 →F q2 →F · · · →F qr = 0.

Unfortunately this is far from being an algorithm since at each step there are infinitely many choices
for c and s. One way to restrict the choices is to introduce a suitable order on the power products
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and then reason that as we are trying to reduce q to 0 we should avoid reductions which introduce
power products which are greater than the ones we have met so far. The idea is to try to ‘squeeze’ q
down to 0. In trying to find a reduction

qi →F qi+1

we therefore aim to kill at least one power product of qi possibly at the expense of introducing
some smaller ones into qi+1. We therefore pick a victim power product from qi, call it v (in fact it
would be enough to choose the largest power of product of qi). The only way to kill v and avoid
introducing larger power products7 is to find some f ∈ F whose leading power product u divides
v, i.e., we have v = ut for some t ∈ [X]. If this is so then

qi −
coeff(v, qi)

lc(f)
ft

is a good reduction of qi. Let us call a sequence of such reductions restricted and one of the previous
type unrestricted. The process described so far is much more reasonable from a computational point
of view: given q and F there are only finitely many possible reductions at each stage so that we
have a tree. Also it turns out that we can ensure there are no infinite chains of reductions (this is
not obvious, it is equivalent to Hilbert’s Basis Theorem). So we construct the finite tree. If any
leaf holds 0 then we deduce that q ∈ (F ) and otherwise q 6∈ (F ).

Let us look at two simple examples. First take p1 = y − 1, p2 = x and q = xy + x. Then

xy + x→p1 (xy + x)− x(y − 1)

= 2x

→p2 2x− 2x

= 0

so that xy + x ∈ (y − 1, x). For the second example we take p1 = y + 1, p2 = xy and q = x.
For our order we can take any reasonable one (e.g., lexicographic with x <L y), the leading power
products will be y and xy respectively. It is clear that no reductions apply to q and so we deduce
that q 6∈ (p1, p2). Alas q = xp1 − p2 and so q ∈ (p1, p2). The error is easy to find: the discussion
above really does prove that if there is a restricted sequence of reductions from q to 0 then q ∈ (F ).
However we did not prove the converse, i.e., that if q ∈ (F ) then there is a restricted sequence of
reductions from q to 0. Of course the converse does hold if we consider the original unrestricted
reductions. The reason the restricted version fails is because during the course of unrestricted
reductions we could introduce power products of any order which are canceled later on. This
motivates the idea of changing basis for the ideal so that we can avoid the cancellation difficulty:
we want a new finite basis G of (F ) with the property that if there is an unrestricted sequence
of reductions (now w.r.t. G rather than F ) from q to 0 then there is also a restricted sequence of
reductions.

Is there any hope here? Let us first observe some simple properties of reductions.

Lemma 6.1 Suppose f →F g then f ∈ (F ) if and only if g ∈ (F ).

7This actually assumes a property of the order relation—indeed this requirement motivates the introduction of
the property.
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Proof Since f →F g we have g = f − chs for some c ∈ k and h ∈ F . Note that shs ∈ (F ). So if
f ∈ (F ) then g is the difference of two members of (F ) and so is in (F ). Conversely h = g + chs,
the rest is similar. 2

Corollary 6.1 Suppose f1 →F f2 →F · · · →F fn then f1 ∈ (F ) if and only if fn ∈ (F ).

Proof Induction on n and the preceding lemma. 2

Note that as 0 ∈ (F ) it follows that if we start with f1 and reduce it to 0 using members of F
then f1 ∈ (F ). When can the restricted reductions idea go wrong? Let us examine the possibilities
(using restricted reductions).

1. f1 6∈ (F ): all reduction sequences will stop at a non-zero polynomial, by the preceding obser-
vation. This is correct.

2. f1 ∈ (F ):

i. Reduce to 0, this is fine it proves that f1 ∈ (F ).

ii. Reductions stop with some g 6= 0; this is wrong, it implies that f1 6∈ (F ) in our algorithm.

Suppose we can find a basis G of (F ) with the property that

f ∈ (F ) & f 6= 0⇒ lpp(p) | lpp(f), for some p ∈ G.

Then case 2.ii cannot happen and the other cases stay as before; i.e., the proposed algorithm works.
Does such a G exist? Yes it certainly does: consider the ideal L generated by all the leading

power products of all the elements of the ideal (F ). By Hilbert’s Basis Theorem, L has a finite
basis M , which, by Exercise 6.5, can be assumed to consist of power products. Now take a finite
subset G of (F ) whose leading power products include all those of M (convince yourself that G
exists—this is a simple exercise in remembering definitions). G is the required basis (this follows by
a simple argument; each polynomial in the ideal reduces to 0 by members of G). The only problem
that remains is to find a way of computing G from F . Roughly speaking we start with G := F
and systematically try to create elements of (F ) whose leading power products are not divisible by
the leading power product of some member of G. Whenever such an element is discovered it is put
into G. We think of such an element as a counterexample to G being an appropriate basis.

How can we produce a polynomial with such a leading power product? First of all any such
polynomial is a member of (G) and so must be expressible as

c1f1s1 + · · ·+ crfrsr,

where ci ∈ k, fi ∈ G, si ∈ [X] for 1 ≤ i ≤ r. If all the fi are equal to f , say, then we do not have a
counterexample since the sum is just a product of f and this reduces to 0. So at the very least we
must consider expressions of the form

c1f1s1 + c2f2s2

where f1 6= f2. If the leading power product of this is a product of u1 = lpp(f1) or of u2 = lpp(f2)
then again we do not have a counterexample. Thus we must have u1s1 = u2s2 and c1 + c2 = 0.
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Moreover it makes sense to pick s1, s2 as small as possible (why?). This motivates the choice
s1 = lcm(u1, u2)/u1, s2 = lcm(u1, u2)/u2, c1 = 1/ lc(f1) and c2 = −1/ lc(f2), i.e., we consider

1

lc(f1)
· lcm(lpp(f1), lpp(f2))

lpp(f1)
· f1 −

1

lc(f2)
· lcm(lpp(f1), lpp(f2))

lpp(f2)
· f2. (†)

This polynomial might still be reducible by f1 or f2 or by other members of G. So we reduce it as
far as possible to produce h, say. Now if h 6= 0 then we have produced a new polynomial of the
desired form and we put it into G. We start again by considering a new pair of distinct polynomials
f1, f2 from F . The process is stopped when every polynomial (†) reduces to 0.

It is easy to see that this process has to stop: let L0, L1, . . . be the ideals generated by the
leading power products of the elements of G at each stage of the process (stage 0 corresponds to
the initialization G := F ). Now we have L0 ⊂ L1 ⊂ . . . where the containments are strict. But
Hilbert’s Basis Theorem tells us that such a chain must be finite, i.e., the process has only finitely
many stages. The one thing we have not shown is that it suffices to consider only expressions of
the form (†), this is left to the formal part of the presentation. (The decision to take r = 2 seems
reasonable if we think of (G) as being generated in stages. At each stage we generate all elements
of the form c1g1s1 +c2g2s2 where ci ∈ k, the gi were generated in some previous stage and si ∈ [X].
It is easy to see that each element of (G) is generated by this process. The only difference from
above is that we do not necessarily have g1, g2 ∈ G.)

There is another property that would be extremely useful. As described so far we have to
consider the whole tree of possible reductions even w.r.t. G. From a computational point of view
it would be much better if we could just follow one reduction to its bitter end. This amounts to
requiring the following:

g
↙∗ ↘∗

g11 g21
↘∗ ↙∗

h

i.e., although we may start two different reduction sequences of g they eventually converge to the
same result (this is the Church–Rosser property). This is indeed the case as can be seen from the
discussion.

As an antidote to constructivists, and at the risk of some repetition, let us summarize the rôle
that Hilbert’s Basis Theorem plays in Gröbner bases. It gives us two invaluable facts. First of all it
assures us that Gröbner bases exist. Secondly it assures us that the algorithm for computing them
always halts. The nature of the proof of the theorem is irrelevant to these two pieces of information.
Indeed the (non-constructive) proof is a rare example of depth of insight combined with extreme
simplicity.

Exercise 6.7 Consider polynomials in the single indeterminate x. A natural order on monomials
is 1 < x < x2 < x3 < . . .. Given a finite set F of polynomials in k[x] what does the process described
above do? (Start with F having two polynomials then three, the pattern will become clear.)

6.3 Definition and Characterization of Gröbner Bases

Throughout let

1. k be a field,
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2. k[X] = k[x1, . . . , xn],

3. F ⊆ k[X].

Hilbert’s Basis Theorem tells us that k[X] is Noetherian, i.e., every ideal of k[X] has a finite basis
(or equivalently every increasing chain of ideals of k[X] terminates).

Recall that [X] is the monoid of all power products in the xi and 1 denotes the identity (ie.
x01 · · ·x0n). An admissible order on [X] is one which satisfies

1. 1 < t for all t ∈ [X]− {1},

2. if s < t then su < tu for all s, t, u ∈ [X].

([X], <) is an ordered monoid. Three important examples are as follows, in each case and we assume
that the indeterminates have been ordered as

x1 > x2 > · · · > xn,

and set
s = xi11 · · ·xinn ,
t = xj11 · · ·xjnn ,

Lexicographic Order (lex): s >lex t if and only if there is an r such that il = jl for 1 ≤ l < r and
ir > jr. Equivalently, if we examine (i1 − j1, . . . , in − jn) from left to right the first non-zero
entry is positive. We will normally write s >L t instead of s >lex t.

Graded Lexicographic Order (grlex): s >grlex t if and only if deg(s) > deg(t) or deg(s) = deg(t) and
s >L t. We have the same equivalent condition on (i1 − j1, . . . , in − jn) as above for ordering
power products of the same degree.

Graded Reverse Lexicographic Order (grevlex): for this we have s >grevlex t if and only if deg(s) >
deg(t) or deg(s) = deg(t) and there is an r such that in−l = jn−l for 0 ≤ l < r but in−r < jn−r.
Equivalently, for power products of the same degree, if we examine (i1− j1, . . . , in− jn) from
right to left the first non-zero entry is negaitive.

The second ordering is also called total degree then lexicographic similarly for the third one. As
an example suppose that x > y > z (so n = 3 with x1 = x, x2 = y and x3 = z) then the power
products under the lexicographic order are ordered as:

1 <L z <L z
2 <L · · · <L y <L yz <L yz2 <L · · ·

<L y
2 <L y

2z <L · · · <L x <L xz <L · · · <L xy <L · · ·

We illustrate the second and third orders for degree 3 power products. For the graded lexicographic
order we have

z3 <grlex yz
2 <grlex y

2z <grlex y
3 <grlex xyz < x2z <grlex x

2y <grlex x
3.

For the graded reverse lexicographic order we have

z3 <grevlex yz
2 <grevlex y

2z <grevlex xyz <grevlex x
2z <grevlex y

3 <grevlex x
2y <grevlex x

3.

This example shows that the graded reverse lexicographic order is not the same as the graded lexi-
cographic order but with the lexicographic ordering of the power products of each degree reversed.
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Lemma 6.2 Let ≤ be any admissible order. Then

1. For all s, t ∈ [X] we have s | t⇒ s ≤ t.

2. There are no infinite decreasing sequences (Noetherianity).

Proof The first part is easy. The second part follows from Hilbert’s Basis Theorem: suppose (for a
contradiction) that s1 > s2 > · · · is an infinite descending sequence. Consider the ascending chain
of ideals

(s1) ⊆ (s1, s2) ⊆ . . . .

We claim that in fact each containment is strict. We prove this by showing that si+1 6∈ (s1, . . . , si)
for each i ∈ N. By Exercise 6.5 si+1 ∈ (s1, . . . , si) if and only if sj | si+1 for some j with 1 ≤ j ≤ i.
But by the first part of this lemma this means that sj+1 < si which is a contradiciton to the fact
that s1 > s2 > · · · is a descending sequence. Thus we have the infinite strictly ascending sequence
of ideals

(s1) ⊂ (s1, s2) ⊂ . . . .

This contradicts Exercise 6.3, whose proof depends on Hilbert’s Basis Theorem. 2

At first sight the second part of this lemma seems to contradict the example from above where we
have y >L · · · >L z2 >L z >L 1. However this is not a sequence, the first element is y but what is
the second element? We must choose one and this can only be of the form ze for some e ∈ N. But
now the sequence is finite, namely y >L z

e >L z
e−1 · · · >L z2 >L z >L 1.

We introduce some more notation. Let f ∈ k[X] − {0} and fix an admissible ordering. The
leading power product of f is the highest power product (w.r.t <) which occurs in f with a non-zero
coefficient:

lpp(f) = max<{ t ∈ [X] | coeff(t, f) 6= 0 }.

The leading coefficient of f is the coefficient of the leading power product:

lc(f) = coeff(lpp(f), f).

The initial term (or initial monomial) of f is

in(f) = lc(f) lpp(f).

For F ⊆ k[X]− {0} we put
lpp(F ) = { lpp(f) | f ∈ F },
in(F ) = { in(f) | f ∈ F }.

Let J be a non-zero ideal of k[X]. We say that a finite subset G of J −{0} is a Gröbner basis for J
if (

in(G)
)

=
(
in(J)

)
,

(recall that by (H) we denote the ideal generated by a subset H of a ring R). We proceed to make
some remarks and give some examples.

1. A finite subset G of J − {0} is a Gröbner basis for J if and only if lpp(J) = lpp(G) · [X]. This
means that for every f ∈ J −{0} there is a g ∈ G such that lpp(g) | lpp(f). This is perhaps the
best way to think of Gröbner bases since it tells us directly that every non-zero polynomial in
J is reducible by at least one polyniomial from the basis.
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2. Every non-zero ideal J of k[X] has a Gröbner basis. Take M ⊆ in(J) where M is a finite basis
of
(
in(J)

)
. Now take a finite subset G of J such that in(G) ⊇M . Then it is easy to see that G

is a Gröbner basis for J .

3. If G is a Gröbner basis for J and f ∈ J then G ∪ {f} is also a Gröbner basis for J .

4. G is a Gröbner basis for J if and only if (lpp(G)) = (lpp(J)). This is a consequence of the fact
that k is a field. (We can define Gröbner bases when the coefficients come from certain types
of rings and then the original definition is necessary.)

5. Not every basis for an ideal is a Gröbner basis. Let

f1 = y + 1,

f2 = xy,

and put
J = (f1, f2) ⊆ Q[x, y].

Take < to be the lexicographic order (with x <L y). Now

x = xf1 − f2 ∈ J

but x 6∈
(
in(f1), in(f2)

)
= (x, xy). Thus {f1, f2} is not a Gröbner basis for J . We saw this

example on p. 66.

6. A set of monomials {c1t1, . . . , cmtm} is always a Gröbner basis for the ideal which it generates.

Now we introduce the reduction relation based on a set of polynomials F (this is what we called
restricted reduction above). Let g, h ∈ k[X]. We say that g →F h if and only if there is some
f ∈ F and s, t ∈ [X] such that coeff(s, g) 6= 0, s = lpp(f)t and h = g −

(
coeff(s, g)/ lc(f)

)
tf . In

such a situation we say that g can be reduced to h w.r.t. F (usually F is understood from the
context). Note that in the definition s is a power product of g chosen as a victim to be killed off by
the reduction. In fact almost everything we do works if we take s = lpp(g)—the only place where
we need the general definition is Theorem 6.6. In examples we can simplify matters by choosing
leading power products as victims, the only price we pay is that we give up the uniqueness property
stated by Theorem 6.6 (in fact we can recover uniqueness by some extra computation).

For an example let
F = {f1, f2} ⊆ Q[x, y]

where
f1 = x2y2 + y − 1,

f2 = x2y + x.

For the ordering we use the lexicographic one with x >L y. Now

2x2y3︸︷︷︸
s

+x2y + 1→f1 (2x2y3 + x2y + 1)− 2 y︸︷︷︸
t

f1

= −2y2 + x2y︸︷︷︸
s

+2y + 1

→f2 (−2y2 + x2y + 2y + 1)− 1 · 1 · f2
= −2y2 + 2y − x+ 1,
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where the last polynomial cannot be reduced any further (w.r.t. F ).

Lemma 6.3 For every F ⊆ k[X]−{0} the reduction relation →F always halts, i.e., every chain of
reductions f1 →F f2 →F · · · leads to a polynomial which cannot be reduced. (This situation usually
summed up by saying that →F is Noetherian.)

Proof If lpp(f1) = 1 the claim is trivial for we are either stuck or reduce to 0 in one step. Let t̄ > 1
be a power product. We use induction on < with the hypothesis that all polynomials with lpp < t̄
lead to finite sequences. Now consider any f = ct̄ + · · ·. If we reduce lower terms the induction
hypothesis implies that we eventually stop. If we kill t̄ then we obtain only terms which are < t̄
and again we are done. 2

We write g →∗F h to mean that by applying zero or more reductions starting with g we eventually
reach h. We write g →∗F h to mean that g →∗F h and h cannot be reduced.

Lemma 6.4 1. If g →∗F h then

g − h =
∑
fi∈F

pifi.

2. For every g there is an h such that g →∗F h.

Proof The first part follows by induction on the number of reductions. The second part is simply
another way of saying that every sequence of reductions eventually halts. 2

Note that g →∗F 0⇒ g ∈ J but the converse need not hold (remember that F is just a basis for an
ideal not necessarily a Gröbner basis).

Theorem 6.3 Let J be an ideal of k[X] and F ⊆ J − {0}. Then the following are equivalent.

1. F is a Gröbner basis for J .

2. For all g, h ∈ k[X] if g ∈ J and g →∗F h then h = 0.

3. For all g ∈ J we have g →∗F 0.

Proof (1 ⇒ 2) : h ∈ J and h = 0 or in(h) 6∈
(
in(F )

)
. But the second possibility cannot happen

with a Gröbner basis and so h = 0.

(2⇒ 3) : trivial.

(3⇒ 1) : For g ∈ J−{0}, do we have in(g) ∈
(
in(F )

)
? This is indeed so since by the third condition

g can be reduced. Thus
(
in(J)

)
=
(
in(F )

)
. 2

Corollary 6.2 Let F be a Gröbner basis for an ideal J of k[X]. Then

1. F generates J .

2. g ∈ J ⇐⇒ g →∗F 0.
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We now give a central definition in the theory of Gröbner bases. Let f, g ∈ k[X] − {0}. The
S-polynomial of f and g is defined as

spol(f, g) = 1

lc(f)
· lcm(lpp(f), lpp(g))

lpp(f)
· f − 1

lc(g)
· lcm(lpp(f), lpp(g))

lpp(g)
· g.

(The ‘S’ in S-polynomial stands for ‘subtraction’.)
As an example consider the lexicographic ordering with x <L y and let

f = 2x2y + 3x2 + 1,

g = 3xy2 − 2x.

Then
x2y2

↙f ↘g

(1/2)y(3x2 + 1) (1/3)x(−2x)

and the difference of the two new polynomials is spol(f, g). The two polynomials (1/2)y(3x2 + 1)
and (1/3)x(−2x) are called the critical pair of f and g.

Lemma 6.5 Suppose that f1, . . . , fl ∈ k[X] − {0}, c1, . . . , cl ∈ k, lpp(f1) = . . . = lpp(fl) = t and

lpp
(∑l

i=1 cifi

)
< t. Then

∑
cifi is a linear combination of S-polynomials of the form spol(fi, fj)

for 1 ≤ i, j ≤ l.

Proof Put di = lc(fi), f
′
i = fi/di. Then

l∑
i=1

cifi = c1d1(f ′1 − f ′2) + (c1d1 + c2d2)(f ′2 − f ′3) + · · ·

+

(
l−1∑
i=1

cidi

)
(f ′l−1 − f ′l ) +

(
l∑
i=1

cidi

)
fl.

This completes the proof since f ′i+1 − f ′i = spol(fi, fi+1) and
∑l
i=1 cidi = 0. 2

6.4 Computation of Gröbner Bases

Here is the really ingenious bit:

Theorem 6.4 (Buchberger’s Theorem) Let J be an ideal of k[X] which is generated by a finite
subset F of k[X]− {0}. Then the following are equivalent:

1. F is a Gröbner basis for J .

2. For all f, g ∈ F we have spol(f, g)→∗F 0.

Proof (1⇒ 2) : immediate.

(2⇒ 1) : let g ∈ J − {0} we show that in(g) ∈
(
in(F )

)
. Put

g =

m∑
i=1

citifi, fi ∈ F, ti ∈ [X], ci ∈ K − {0}. (∗)
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Consider the highest power products ti in the sum. Put

u = max
<
{ ti lpp(fi) | 1 ≤ i ≤ m },

ḡ =
∑

ti lpp(fi) = u

citifi.

Now choose a representation (∗) of g which makes u minimal.
Suppose that lpp(ḡ) < u. By the preceding lemma we have

ḡ =
∑

dij spol(tifi, tjfj).

But all the power products in each spol(tifi, tjfj) are < u and this is a contradiction to the
minimality of u. Thus lpp(ḡ) = u and in(g) = in(ḡ) ∈

(
in(F )

)
. It now follows that F is a Gröbner

basis for J . 2

The basic algorithm is as follows (here the phrase ‘compute a normal form of g w.r.t. G’ means that
we reduce g w.r.t G as much as possible—it doesn’t matter which of the many choices we make at
each reduction step).

Algorithm: GRÖBNER BASIS (F ) 7→ G

(F and G are finite sets of polynomials, (F ) = (G) and G is a Gröbner basis for (F ).)

G := F ;

while not all S-polynomials of G have been considered do

choose a new spol(f, g);

compute a normal form h of it w.r.t G;

if h 6= 0 then G := G ∪ {h} fi

od

This may be elaborated as:

Algorithm: GRÖBNER BASIS (F ) 7→ G

(F and G are finite sets of polynomials, (F ) = (G) and G is a Gröbner basis for (F ).)

let F = { f1, f2, . . . , fm };
P := {(fi, fj) | 1 ≤ i < j ≤ m};
G := F ;

while P 6= ∅ do

remove the first pair (f, g) from P ;

compute a normal form h of spol(f, g) w.r.t. G;

if h 6= 0 then

P := P ∪ {(h, p) | p ∈ G};
G := G ∪ {h}

fi

od
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Reducible power products

Figure 1: Progress of GRÖBNER BASIS with indeterminates x, y.

An indication of the algorithm’s progress can be seen from the diagram of figure 1 for the case of
two indeterminates x and y. As more and more h’s are reduced we cut off more regions and so we
eventually stop (the region left over could be infinite).

For an example let
f1 = x2y2 + y − 1,

f2 = x2y + x,

and take the lexicographic order with x >L y. Thus initially we have G = {f1, f2}. The following
describes one way in which the algorithm could execute (recall that we have a free choice for
spol(f, g) in the loop):

1. spol(f1, f2) = f1 − yf2 = −xy + y − 1. This does not reduce further so put

f3 = −xy + y − 1,

G = {f1, f2, f3}.

2. spol(f2, f3) = f2 + xf3 = xy →f3 y − 1. We put

f4 = y − 1,

G = {f1, f2, f3, f4}.

3. spol(f3, f4) = f3 + xf4 = −x+ y − 1→f4 −x. We put

f5 = −x,
G = {f1, f2, f3, f4, f5}.
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4. spol(f1, f3) = f1 + xyf3 = xy2 − xy + y − 1→G 0.

5. spol(f2, f4) = f2 − x2f4 = x2 + x→G 0.

The algorithm is now finished with

G = {x2y2 + y − 1, x2y + x, −xy + y − 1, y − 1, −x}.

In fact {x, y − 1} is a Gröbner basis for {f1, f2}.

Theorem 6.5 Let G be a Gröbner basis for an ideal I of k[X]. Let g, h ∈ G with g 6= h. Then

1. If lpp(g) | lpp(h) then G′ = G− {h} is also a Gröbner basis for I.

2. If h→G h′ then G′ = (G− {h}) ∪ {h′} is also a Gröbner basis for I.

Proof For the first part we note that (G′) ⊆ I. For f ∈ I we have f →∗G 0 but in fact we have
f →∗G′ 0. (N.B. we cannot throw polynomials out during the computation of a Gröbner basis.)

For the second part note that (G′) = (G). If lpp(h) is reduced then the result follows from the
first part. If some other power product is reduced then

(
lpp(G′)

)
=
(
lpp(G)

)
=
(
lpp(I)

)
. 2

Suppose that G is a Gröbner basis. We say that

1. G is minimal if and only if lpp(g) 6 | lpp(h) for all g, h ∈ G with g 6= h.

2. G is reduced if and only if for all h, g ∈ G with h 6= g, h cannot be reduced by g.

3. G is a normed basis if lc(f) = 1 for all f ∈ G.

Theorem 6.6 A normed reduced basis for an ideal I is unique.

Proof Suppose G, G′ are normed reduced bases for I. Let

G = {g1, . . . , gm},
G′ = {g′1, . . . , g′m′}.

Now g1 →∗G′ 0, in particular lpp(g1) can be reduced by G′ and so w.l.o.g. lpp(g′1) | lpp(g1). Also
g′1 →∗G 0 and again lpp(gk) | lpp(g′1) for some k. But lpp(g′1) | lpp(g1) and so k = 1. Thus
lpp(g1) = lpp(g′1). In his way we obtain m = m′ and lpp(gi) = lpp(g′i) for 1 ≤ i ≤ m.

Now consider any gi. We have gi →∗G′ 0, suppose that g′i 6= gi. The only way to kill lpp(gi) is to
use g′i. Now gi − g′i 6= 0, but none of the power products in this polynomial can be reduced w.r.t.
G′ and so gi 6→∗G′ 0 which is a contradiction. 2

We make a couple of observations:

1. The size of a Gröbner basis depends on the ordering that we use.

2. For a field k and ideal I of k[X] we have that k[X]/I is a vector space over k. (k[X]/I is called a
quotient ring; roughly speaking we use polynomials as always but now we deem two polynomials
to be equal whenever their difference in in I. You can find a description of this construction in
any introductory book on ring theory). We can compute with this by working with a Gröbner
basis G and using irreducible elements w.r.t. G as representatives of equivalence classes. To
obtain a basis we just take the irreducible power products. Thus dimk k[X]/I is the number of
such irreducible power products and so this number is independent of the Gröbner basis used.
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6.5 Applications of Gröbner Bases

Many applications are given by Buchberger [12]. Here we look at just two applications.

Ideal Membership

Given an ideal I = (f1, . . . , fs) and a polynomial f is f ∈ I? Compute a Gröbner basis G for I.
Then

f ∈ I ⇐⇒ f →∗G 0.

Solution of Equations by Gröbner Bases

We know from Hilbert’s Nullstellensatz that a system of polynomial equations (over an algebraically
closed field such as C) is inconsistent (i.e., has no solution) if and only if 1 is in the ideal that they
generate. But it is obvious that 1 is a member of an ideal if and only if its normed Gröbner basis
is just {1}. Alternatively we can just compute a Gröbner basis which is not necessarily normed or
reduced and see if it contains a non-zero constant.

A system of polynomial equations over some field k might have only finitely many or infinitely
many solutions. The following result gives us a method of deciding between the two possibilities
(when k is algebraically closed).

Theorem 6.7 Let G be a Gröbner basis for I where I is an ideal of k[X] and k is algebraically
closed. Then V(I) is finite if and only if for each xi, 1 ≤ i ≤ n, there is an ei ≥ 0 such that
xeii ∈ lpp(G).

For example consider
f = y3 + x2 + 2xy,

g = x2 + y2 − 1.

If we use Axiom’s groebner with total degree then reverse lexicographic order with x > y (type
HDMP([y,x],INT))8) then a Gröbner basis for (f, g) is:

T = {y3 − y2 + 2xy + 1, y2 + x2 − 1},

(this is normed and reduced but the Theorem does not require the extra property). Now

lpp(T ) = {y3, x2}

which shows that f , g have only finitely many common zeros (over C, say). Note however that T
is not particularly useful if we want to find the common zeros. For this it is much better to use the
lexicographic order since then

L = {2x− y5 + 2y4 − 5y3 − y2 + 5y, y6 − 2y5 + 5y4 + 2y3 − 6y2 + 1},

is the normed reduced Gröbner basis for (f, g) (assuming this time that x >L y). Note that we
have one polynomial in y alone. We can solve this (either approximately or using more sophisti-
cated symbolic techniques) and then substitute each solution into the other polynomial to find the
corresponding value of x.

8HomogeneousDistributedMultivariatePolynomial([x,y],Integer)) in full!
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Let us examine the general situation. Suppose that we have a system:

p1(x1, . . . , xn) = 0,

p2(x1, . . . , xn) = 0,

...

pm(x1, . . . , xn) = 0,

which we know (from other considerations) has only finitely many solutions, say N of them. We
might as well assume that N > 0 (i.e., there is at least one solution). If we diagonalize the system
then we are in a much better position to solve it, i.e., we want to replace it with an equivalent
system that looks like:

q1(x1, x2, x3 . . . , xn) = 0,

q2(x2, x3 . . . , xn) = 0,

q3(x3 . . . , xn) = 0,

...

qn(xn) = 0,

where lpp(qi) = xeii for some ei > 0. (In practice we might have some extra equations which serve
to rule out certain solutions, so it would be more accurate to say that part of the new system looks
like the above.) We can solve the diagonalized system since the last equation gives finitely many
values for xn. We can substitute each of these values in the penultimate equation to obtain finitely
many corresponding values for xn−1 (the fact that lpp(qn−1) involves only xn−1 means that even
after substituting a value for xn we are left with a non-constant polynomial in xn−1). Iterating this
process gives us all the solutions to the system.

Exercise 6.8 Give an upper bound on the number of solutions to a diagonalized system in terms
of the degrees of the polynomials that occur in it.

How can we produce a diagonalized system? First of all suppose that we have a set F of
polynomials, as above, with only finitely many solutions:

Pi = (αi1, αi2, . . . , αin),

where 1 ≤ i ≤ N . Note that each of the polynomials

fj = (xj − α1j)(xj − α2j) . . . (xj − αNj),

for 1 ≤ j ≤ n, vanishes at all the solutions of the system F . Assuming that k is algebraically
closed, it follows from the Nullstellensatz that some power of fj is in the ideal (F ). We conclude
from this that for each xi the ideal (F ) contains non-constant polynomials which involve no other
indeterminates. Let us order [X] lexicographically with x1 > x2 > · · · > xn. Now let G be
a Gröbner basis for (F ) w.r.t. the lexicographic ordering. We know that (G) has a polynomial
hn(xn) ∈ k[xn]. By the defining property of Gröbner bases there must be a g ∈ G such that

lpp(g) | lpp(hn). (∗)
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Now if g involves any indeterminate other than xn then so does lpp(g) (because of the lexicographic
ordering) in which case (∗) cannot hold (since lpp(hn) cannot involve any indeterminate other than
xn). Thus G has a polynomial from k[xn] which is not in k (the polynomial cannot be in k for then
the system has no solutions at all). Of course the leading power of this polynomial is of the form
xenn for some en > 0.

We can repeat the preceding argument with xn−1 in place of xn and hn−1 in place of hn. In
this case the conclusion is that g cannot involve any indeterminates other than xn−1 and xn (the
occurrence of xn does not prevent lpp(g) from involving only xn−1). We therefore conclude that G
also has a polynomial g which is in k[xn−1, xn] but not k[xn] (g cannot be in k[xn] for then it is
either a constant, in which case the system has no solutions, or lpp(g) involves xn and so cannot
divide a power product of the form xmn−1). Clearly we must have lpp(g) = x

en−1

n−1 for some en−1 > 0.
Obviously we can continue this argument down to considering x1 in place of xn.

What we have given is an outline proof of:

Theorem 6.8 A system of polynomial equations has finitely many solutions over an algebraically
closed field (e.g., C) if and only if each indeterminate appears in the form xeii , where ei ≥ 0, as the
initial term of one of the members of the normed reduced Gröbner basis of the polynomials where
the basis is computed w.r.t. a lexicographic ordering. (If the system has at least one solution then
ei > 0 for each i.) Moreover such a basis includes a diagonalized set of polynomials.

Note that the situation when there are no solutions is covered because then the normed reduced
Gröbner basis is just {1}. The leading power product of 1 is just 1 and this is x0 for any indeter-
minate x.

Exercise 6.9 Show that the Theorem need not hold if k is not algebraically closed.

We can phrase most of the preceding discussion purely in terms of ideals, without any assumption
about the corresponding variety, as follows (also we do not assume that k is algebraically closed
because we do not use the Nullstellensatz). Let I be an ideal of k[X] and set

Ij = I ∩ k[xj , xj+1, . . . , xn],

for 1 ≤ j ≤ n. Note that Ij is an ideal of k[xj , xj+1, . . . , xn], it is called the jth elimination ideal
of I. Observe that I1 ⊇ I2 ⊇ · · · ⊇ In and so if Ir = 0 then Ir+1 = . . . = In = 0. Moreover
every non-zero member of In is a polynomial in xn alone, every non-zero member of In−1 is a
polynomial in xn−1, xn etc. Now let G be a Gröbner basis for I w.r.t. the lexicographic ordering
with x1 > x2 > · · · > xn. Then, as above, we see that whenever Ij 6= 0 there must be a member h
of G which is in k[xj , xj+1, . . . , xn]. Also if Ij 6⊆ k[xj+1, . . . , xn] (i.e., Ij has elements which really
involve xj) then h 6∈ k[xj+1, . . . , xn] provided that I 6= k[X]. Moreover if we set

Gj = G ∩ k[xj , xj+1, . . . , xn],

for 1 ≤ j ≤ n, then it is a simple matter to see that Gj is a Gröbner basis for Ij whenever Ij 6= 0.
It now follows that if Ij 6= 0 then

Ij = (G ∩ k[xj , xj+1, . . . , xn]),

and we can remove the assumption on Ij provided we agree that the empty set generates the zero
ideal. In summary a Gröbner basis computed w.r.t. a lexicographic ordering produces a generating
set for the ideal which is as diagonalized as possible.
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6.6 Improvements of the Basic Gröbner Basis Algorithm

The basic algorithm can be optimized in various ways. The reduction of S-polynomials is a very
costly part of the algorithm so it is worthwhile avoiding as many of these as possible. Buch-
berger [10] shows that if the basis constructed so far has an element h such that lpp(h) | lcm(lpp(f), lpp(g))
and if we have already considered spol(f, h) and spol(h, g) then we need not consider spol(f, g)
because this will reduce to zero. We say that f , g are connected. (The situation can be gener-
alized further. There are also other criteria, e.g., if lcm(lpp(f1), lpp(f2)) = lpp(f1) lpp(f2) then
spol(f1, f2)→∗F 0.)

We can now give an improved version of the Gröbner basis algorithm.

Algorithm: rGB(F ) 7→ G

G := F ;

C :=
{

({g1, g2}, p) | g1, g2 ∈ G, g1 6= g2, p = lcm(lpp(g1), lpp(g2))
}

;

while C 6= 0 do

({g1, g2}, p) := an element from C;

if (g1, g2 are not connected) then

h := a normal form of spol(g1, g2) w.r.t. G;

if h 6= 0 then

C := C ∪ (new critical pairs from h);

G := G ∪ {h}
fi

fi

od

Let us look at an example from Z2[x, y, z]. Put

F = {f1, f2, f3}

where
f1 = x3yz + xz2,

f2 = xy2z + xyz,

f3 = x2y2 + z2.

Initially
C := {({f1, f2}, x2y2z), ({f1, f3}, x3y2z), ({f2, f3}, x2y2z)}.

We start with the least p, i.e., x2y2z and obtain

f4 = x2yz + z3.

We add f4 to the basis, remove ({f2, f3}, x2y2z) from C and add new pairs to C. Next we obtain
from f1, f4

f5 = xz3 + xz2.
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Consideration of f2, f4 yields
f6 = yz3 + z3.

Now consider {f3, f4}:
x2y2z

↙f3 ↓f2 ↘f4

↔∗ ↔∗

We have already considered f2, f3 and f2, f4 and the lcm’s ‘fit’ so there is no need to reduce
{f3, f4}.

Completion leads to 9 polynomials. The basic algorithm considers
(
9
2

)
= 36 reductions of S-

polynomials. As observed above it is these reductions which tend to be the most expensive part of
the algorithm.

6.7 Complexity of Computing Gröbner Bases

The method of Gröbner bases is clearly a very powerful technique and so it is important to have im-
plementations which are as efficient as possible. This raises the question of the inherent complexity
of computing Gröbner bases. Unfortunately the worst case space complexity is double exponential
in the number of indeterminates (although the behaviour is much better in practice).

The ingredients for a Gröbner basis are a finite set G of multivariate polynomials (usually with
coefficients from Q) and a suitable total order on the power products. It is a well known observation
that, for a given set G, the runtime for a total degree order (i.e., power products are sorted first
according to degree and then by some other criterion, especially reverse lexicographic) is usually
better than for a lexicographic one and frequently it is dramatically better. In this section we show
that, for a class of examples, this behaviour is explained by a conjecture in Complexity Theory. See
Bayer and Stillman [4] or Eisenbud [23] for special properties of the reverse lexicographic order
(however these references are quite advanced). We will also produce examples of polynomials such
that any Gröbner basis for them under a lexicographic order is exponentially larger than the input
polynomials.

It is an easy exercise to encode NP-complete problems in terms of Gröbner bases. For example,
given an instance of Satisfiability we can produce a set of equations such that the given formula
is satisfiable if and only if the equations have a common zero in some algebraically closed field
(in fact the encoding ensures that any solution will have components from { 0, 1 }). We test the
last condition by computing a Gröbner basis for the polynomials and checking to see if it has a
nonzero constant. Although this gives us a hint that in the worst case Gröbner bases will be hard to
compute, such an approach does not help to explain the difference in runtimes between total degree
and lexicographic orders. This suggests that we should consider problems for which solutions are
known to exist but for which some other property is believed to be intractable. In this note we focus
on #P-complete problems; see Papadimitriou [50] for background. Although this class includes the
counting versions of NP-complete problems (e.g., Satisfiability) it also includes very restricted
versions of #Monotone Satisfiability (prefixing a decision problem with # indicates that we
are considering its counting version). We show how to encode efficiently one of these problems
in such a way that finding the Gröbner basis under a total degree order costs no more than the
encoding while even partial information about the Gröbner basis under a lexicographic order would
amount to solving the #P-complete problem. In fact we also show that, without any assumptions
on #P, it is quite easy to produce examples where the difference in runtimes is exponential in the
size of the input (the second basis is exponentially larger than the first).
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Becker and Weispfenning [5] include a brief discussion on complexity issues in an Appendix.
Here we note that Möller and Mora [47] and Huynh [33] show that in the worst case Gröbner bases
have polynomials whose degree is Ω(d2

n

) where d is the maximum of the degrees of the inputs and n
is the number of indeterminates; their proofs are based on work of Mayr and Meyer [43]. Moreover
Huynh [33] proves that the same holds for the cardinality of Gröbner bases. For zero-dimensional
ideals (i.e., ones with finitely many zeros) the situation is not so bad. Lakshman [42] shows that
for polynomials with rational coefficients with finitely many common zeros the cost of computing
their Gröbner basis under any admissible ordering is bounded by a polynomial in dn where d, n
are as above. The ideals we use are all zero dimensional and indeed it is easy to see how to obtain
their Gröbner basis in O(2n) time for the orderings under consideration.

6.7.1 Algebraic Preliminaries

Throughout k will be a field and X = {x1, . . . , xn } a nonempty set of distinct indeterminates over

k. For each f ∈ k[X] we set f = 1− f and note that f = f . We also set

R = {y1y2 · · · yn|yi ∈ {xi, xi }, for 1 ≤ i ≤ n},
S = {x21 − x1, x22 − x2, . . . , x2n − xn }.

Let I be an ideal of k[X] that contains S as a subset. Since x2i −xi = x2i −xi = xixi it is clear that
for all m1,m2 ∈ R we have

m1m2 ≡
{
m1 (mod I), if m1 = m2;
0 (mod I), if m1 6= m2.

(The notation a ≡ b (mod I) simply means that a − b ∈ I.) It is now easy to see that the
members of R are linearly independent over k (consider their images in k[X]/(x21−x1, . . . , x2n−xn)).
Moreover every power product xe11 x

e2
2 · · ·xenn when considered modulo I can be written as a unique

linear combination of the members of R (if ei > 1 then xeii ≡ xi (mod I), while if ei = 0 then
multiply by xi + xi and expand).

Lemma 6.6 Let I be an ideal of k[X] that contains S as a subset. Let f ∈ k[X] and set f ≡∑r
i=1 aimi (mod I) where each ai ∈ k∗ and mi ∈ R. Then f ∈ I if and only if mi ∈ I for

1 ≤ i ≤ n.

Proof Suppose that f ∈ I. Then for each i we have a−1i mif ∈ I. However a−1i mif ≡ mi

(mod I). The converse is immediate. 2

Lemma 6.7 Let I be an ideal of k[X] that contains S as a subset. Then I is a radical ideal, i.e.,
fs ∈ I for some s > 0 if and only if f ∈ I.

Proof Set f ≡
∑r
i=1 aimi (mod I) where each ai ∈ k∗ and mi ∈ R. Then, from the observations

made above, we have fs ≡
∑r
i=1 a

s
imi (mod I) and the result follows from the preceding lemma.

2

Suppose now that k has characteristic 0 so that it contains Q as a subfield. Let α be the endomor-
phism of k[X] induced by x1 7→ x1− 2x2− 22x3− · · · − 2n−1xn and xi 7→ xi, for 2 ≤ i ≤ n. Clearly
α is an automorphism of k[X].
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Lemma 6.8 Let I be an ideal of k[X] that contains S as a subset and assume that k has charac-
teristic 0. Then α(I) is a radical ideal of k[X]. Furthermore if (a1, a2, . . . , an) and (b1, b2, . . . , bn)
are zeros of α(I) with a1 = a2 then ai = bi for 2 ≤ i ≤ n.

Proof The fact that α is an automorphism implies that α(I) is an ideal. Now fs ∈ α(I) if and
only if α−1(f)s ∈ I and so α(I) is radical by Lemma 6.7.

The last part follows from the observation that (c1, c2, . . . , cn) ∈ { 0, 1 }n is a zero of I if and
only if (c1 + 2c2 + · · ·+ 2n−1cn, c2, . . . , cn) is a zero of α(I). 2

In the following we will use V(I) to denote the set of common zeros of an ideal I. The next lemma
draws together some well known facts about radical zero-dimensional ideals, e.g., see Becker and
Weispfenning [5], Chapter 8.

Lemma 6.9 Let I be an ideal of k[X] that contains S as a subset and assume that k has charac-
teristic 0. Then α(I) ∩ k[x1] 6= 0. Furthermore let p1 be a nonzero monic element of α(I) ∩ k[x1]
of minimal degree and set d = deg(p). Then

1. |V(I)| = d.

2. p1 = (x1−ξ1)(x1−ξ2) · · · (x1−ξd) where ξ1, ξ2, . . . , ξd are the x1-coordinates of all the elements
of V(α(I)). In particular p1 has integer coefficients.

3. There are polynomials p2, . . . , pn ∈ Q[x1] such that x2 − p2, . . . , xn − pn ∈ α(I) and either
pi = 0 or deg(pi) < d for 2 ≤ i ≤ n.

Proof Note that V(I) ⊆ { 0, 1 }n and is unchanged if we enlarge k and so we may assume that
k is algebraically closed. Clearly |V(I)| = |V(α(I))|. Let ξ1, ξ2, . . . , ξr be the x1-coordinates
of all the elements of V(α(I)). By Lemma 6.8, we have r = |V(I)|. Now the polynomial q =
(x1 − ξ1)(x1 − ξ2) · · · (x1 − ξr) vanishes on V(α(I)) and so by Hilbert’s Nullstellensatz it lies in the
radical of α(I). Hence q ∈ α(I) since α(I) is radical by Lemma 6.8. Thus, by the definition of d,
we have d ≤ r. Since p1 vanishes on V(α(I)) we have xi − ξi | p1, for 1 ≤ i ≤ r; therefore d ≥ r
and so d = r. Thus p1 = q.

Let (a1i, a2i, . . . , ani) for 1 ≤ i ≤ d be the zeros of α(I). By interpolation we can find, for each
j with 2 ≤ j ≤ n, a polynomial pi ∈ Q[x1] such that pj(a1i) = aji and either pj = 0 or deg(pj) < d.
Now xj − pj vanishes on V(α(I)) and so xj − pj ∈ α(I). 2

This lemma provides a simple proof of the fact that the size of a Gröbner basis can be exponentially
larger than the size of the input. For example consider the set S. This has size O(n) (we assume
the use of a sparse distributed representation as the data structure for multivariate polynomials,
although this is not critical for our example). Let B be a Gröbner basis of α(S) under a lexicographic
order in which x1 is least. Then, by the elimination property of Gröbner bases using lexicographic
order, B contains a non-zero constant multiple of the polynomial p1 of Lemma 6.9. The roots of
p1 are precisely 0, 1, . . . , 2n−1 so that p1 has degree 2n; however this does not mean that the size of
p1 is exponential in n since it is possible that when expanded it is sparse. In fact when expanded
all coefficients of p1 except for the constant term are nonzero. This follows from the fact that the
coefficients are obtained by evaluating the elementary symmetric functions in n variables at the
roots of p1 and these roots are all strictly positive except for one which is 0.
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Fom now on let G be a subset of k[X] such that S ⊆ G. Define β to be the endomorphism of
k[X] induced by x1 7→ x21 and xi 7→ xi, for 2 ≤ i ≤ n. Note that β is a injective but not surjective.
Set

I = (G), J = α(I), K = (β(J)).

Lemma 6.10 Let I = (G) as above and assume that k has characteristic 0. Then K ∩ k[x1] 6= 0.
Furthermore, let p1 be a nonzero monic element of K∩k[x1] of minimal degree and set d = deg(p1).
Then

1. |V(I)| = d/2.

2. p1 = (x21−ξ1)(x21−ξ2) · · · (x21−ξr) where ξ1, ξ2, . . . , ξr are the x1-coordinates of all the elements
of V(J).

3. There are polynomials p2, . . . , pn ∈ Q[x21] such that x2−p2, . . . , xn−pn ∈ K and either pi = 0
or deg(pi) < d− 1 for 2 ≤ i ≤ n.

Proof As in Lemma 6.9, we may assume that k is algebraically closed. Let ξ1, ξ2, . . . , ξr be the
x1-coordinates of all the elements of V(J) and set q(x1) = (x1 − ξ1)(x2 − ξ2) · · · (x1 − ξr). By
Lemma 6.9, q(x1) ∈ J and so q(x21) ∈ K. Thus d ≤ 2r.

We claim that x21 − ξi | p1, for 1 ≤ i ≤ r. Consider (a1, a2, . . . , an) ∈ { 0, 1 }n and set A =∑n
i=1 ai2

i−1. Now (A, a2, . . . , an) is a zero of J if and only if (B, a2, . . . , an) is a zero of K for all
B such that B2 = A. Since k has characteristic 0 and is algebraically closed it follows that each
nonzero element of k has exactly two distinct square roots in k. Since p1 vanishes at each zero of
K it follows that x21 − ξi | p1 whenever ξi 6= 0. Now if (0, 0, . . . , 0) is not zero of J then ξi 6= 0, for
1 ≤ i ≤ n, and the proof of the claim is complete. On the other hand if (0, 0, . . . , 0) is a zero of J
then exactly one ξi is equal to 0. However we have x21 | p1 since no element of G can have a nonzero
constant term and so sending xi to 0, for 2 ≤ i ≤ n, leaves p1 fixed and sends K to (x41 − x21) or to
(x41 − x21, x21) = (x21). Thus d ≥ 2r and p1 = q(x21) as claimed.

The final part follows from the last part of Lemma 6.9. 2

Note that K need not be radical, however it is ‘nearly’ so. The next lemma clarifies the situation
(we will not need this result subsequently).

Lemma 6.11 Suppose that k has characteristic 0. Then

1. K is radical if and only if G contains a polynomial with a nonzero constant term.

2. Suppose that f(x21, x2, . . . , xn)s ∈ K for some s > 0. Then f(x21, x2, . . . , xn) ∈ K.

Proof For the first part we use a result given by Becker and Weispfenning [5] as Proposition 8.14
(based on a Lemma of Seidenberg): If k is perfect, then a zero-dimensional ideal is radical if and
only if it contains a univariate squarefree polynomial in each indeterminate. In our case K contains
x2i − xi, for 2 ≤ i ≤ n, which are squarefree. Thus K is radical if and only if the generator of
K ∩ k[x1] is squarefree, i.e., if and only if the polynomial p(x1) of Lemma 6.10 is squarefree. This
is so if and only if (0, 0, . . . , 0) is not a zero of J and this is equivalent to the stated condition on G.

For the second part, if f(x21, x2, . . . , xn)s ∈ K for some s > 0 then there are polynomials
f1, f2, . . . , fr ∈ k[X] and g1, g2, . . . , gr ∈ G such that f(x21, x2, . . . , xn)s = f1β(g1) + · · · + frβ(gr).
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Set fi = fi0 + fi1, for 1 ≤ i ≤ r, where each term of fi0 has even degree in x1 and each term
of fi1 has odd degree in x1. Since each term in β(gi), for 1 ≤ i ≤ r, has even degree in x1
it follows that f(x21, x2, . . . , xn)s = f10β(g1) + · · · + fr0β(gr). Now replacing x1 by x

1/2
1 we see

that f(x1, x2, . . . , xn)s ∈ J and so f(x1, x2, . . . , xn) ∈ J since J is radical, by Lemma 6.7. Thus
f(x21, x2, . . . , xn) ∈ K as claimed. 2

Lemma 6.12 Let L be an ideal of k[X] and suppose that there are p1, p2, . . . , pn ∈ k[x1] such that
p1, x2 − p2, . . . , xn − pn ∈ L. Then, provided that p1 is of minimal degree amongst all members of
L ∩ k[x1], we have L = (p1, x2 − p2, . . . , xn − pn).

Proof Set L′ = (p1, x2 − p2, . . . , xn − pn) and choose f ∈ L. Then f ≡ q (mod L′) for some
q ∈ L ∩ k[x1]. It follows that p1 | q since L ∩ k[x1] = (p1), by the assumption on the degree of p1.
Thus f ≡ 0 (mod L′) and so f ∈ L′ which means that L ⊆ L′. The result follows since L′ ⊆ L by
assumption. 2

6.7.2 Counting

Let y1, y2, . . . , yN be boolean variables and consider the following problem:

#Monotone 2-Sat

Input: A boolean formula φ = c1 ∧ c2 ∧ · · · cs where each ci is of the form yi ∨ yj for some i, j with
1 ≤ i, j ≤ N .

Output: The number of satisfying assignments to the given formula.

Valiant (1979) shows that this problem is #P-complete. Note that we may assume that i 6= j for
each clause yi ∨ yj of φ and we make this assumption from now on (this just makes the encoding
given below a little simpler; see the remark after Lemma 6.13). Let k, X be as in the preceding
section where the cardinality n of X is set to N + 1. Given a boolean formula φ as above, we can
encode it as a set of polynomials Gφ in k[X] as follows:

true 7→ 0,

false 7→ 1,

yi ∨ yj 7→ xi+1xj+1.

Gφ consists of the encoded clauses of φ together with x1 and the set S but with x21 − x1 omitted.
It is clear that there is a 1–1 correspondence between the satisfying assignments of φ and the zeros
of I = (Gφ). Set J = α(I) and K = (β(J)), as in §6.7.1.

Lemma 6.13 Consider any total degree order on the power products of k[X]. Then β(α(Gφ)) is a
Gröbner basis of K.

Proof There is a subset P of { 2, 3, . . . , n }2 such that the members of β(α(Gφ)) are precisely

l = x21 −
n∑
i=2

2i−1xi,

fij = xixj , for (i, j) ∈ P
si = x2i − xi, for 2 ≤ i ≤ n.
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This set is a Gröbner basis if and only if every S-polynomial of each pair of its elements reduces
to 0. We make use of Buchberger’s first criterion: if the leading power product of g is coprime to
that of h then S(f, g) reduces to 0 using g and h. This means that we do not need to consider l
since its leading power product is x21 and x1 does not appear in any other polynomial of our set.
Likewise we do not need to consider S(si, sj). It is also clear that S(xixj , xrxs) = 0 (this is so for
arbitrary power products; S-polynomials are designed to do this). Finally we need only consider
S(xixj , x

2
i − xi) for (i, j) ∈ P . Recall that i 6= j so that S(xixj , x

2
i − xi) = xixj and this reduces

to 0 since xixj is in our set. 2

We note that if we allow clauses in φ of the form yi ∨ yi then everything works provided such a
clause is encoded as xi+1 rather than x2i+1 (we can also omit x2i − xi).

Lemma 6.14 Assume that k has characteristic 0 and consider a lexicographic order on the power
products of k[X] in which x1 is the smallest indeterminate. Let p1, p2, . . . , pn be as in Lemma 6.10
with K = (β(α(Gφ))). Then

1. Every Gröbner basis of K using the preceding order includes a nonzero constant multiple of
p1.

2. p1, x2 − p2, . . . , xn − pn form a Gröbner basis for K.

Proof By Lemma 6.10, p1 ∈ K and so this must reduce to 0 under any Gröbner basis for K.
This means that the basis must have a member q ∈ k[x1] such that q | p1 (since we are using a
lexicographic order in which x1 is the smallest indeterminate). But p1 has minimal degree amongst
all nonzero members of K ∩ k[x1]. The first part now follows.

For the second part we note that p1, x2 − p2, . . . , xn − pn are certainly a Gröbner basis (under
the stated order) for the ideal that they generate; see the remarks in the proof of Lemma 6.13. By
Lemma 6.10 and Lemma 6.12 this ideal is K. 2

We can now see one way in which the well known differences in runtime for computing Gröbner
bases under a total degree order as opposed to a lexicographic one can be linked with Complexity
Theory. On the one hand the Gröbner basis of K under a total degree order is as cheap to compute
as possible; it is the same as the input! On the other hand if we use a lexicographic order with x1
as the smallest indeterminate then even finding the degree of p1 amounts to solving a #P-complete
problem. Moreover if we fix a φ with exponentially many satisfying assignments then the polynomial
p1 in the Gröbner basis of K under a lexicographic order with x1 as the least indeterminate has
exponentially many terms (see the remarks after Lemma 6.9). Thus the runtime of any algorithm
to compute this Gröbner basis is exponential while the Gröbner basis under a total degree order can
be computed in linear time. This provides simple examples for which a change of ordering method
such as that of Faugère, Gianni, Lazard and Mora [24] does not help.

6.8 The Case of Two Indeterminates

For polynomials in two indeterminates it can be shown that if all the inputs to the Gröbner basis
algorithm have total degree bounded by d then the total degrees of the elements of a reduced basis
are always bounded by d2. (If a total degree order is used then the bound can be improved to
2d − 1.) Moreover the number of of polynomials in the reduced basis is bounded by m + 1 where
m is the minimum of the total degrees of the leading power products of the inputs. These facts
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h1 = 〈 777 〉y + 〈 769 〉x48 − 〈 770 〉x47 − 〈 770 〉x46 − 〈 771 〉x45 + 〈 773 〉x44

− 〈 774 〉x43 − 〈 774 〉x42 − 〈 773 〉x41 − 〈 774 〉x40 − 〈 775 〉x39 − 〈 775 〉x38

− 〈 775 〉x37 − 〈 775 〉x36 − 〈 775 〉x35 − 〈 775 〉x34 − 〈 776 〉x33 + 〈 775 〉x32

+ 〈 776 〉x31 − 〈 776 〉x30 − 〈 776 〉x29 + 〈 776 〉x28 − 〈 776 〉x27 + 〈 777 〉x26

+ 〈 776 〉x25 − 〈 777 〉x24 + 〈 776 〉x23 + 〈 777 〉x22 − 〈 777 〉x21 + 〈 776 〉x20

+ 〈 776 〉x19 − 〈 776 〉x18 + 〈 777 〉x17 + 〈 776 〉x16 − 〈 778 〉x15 + 〈 777 〉x14

+ 〈 777 〉x13 − 〈 777 〉x12 + 〈 777 〉x11 − 〈 776 〉x10 − 〈 777 〉x9 + 〈 778 〉x8

+ 〈 775 〉x7 − 〈 777 〉x6 + 〈 777 〉x5 − 〈 777 〉x4 − 〈 777 〉x3 + 〈 777 〉x2

+ 〈 777 〉y + 〈 776 〉x− 〈 776 〉,
h2 = 〈 16 〉x49 − 〈 17 〉x48 + 〈 17 〉x47 − 〈 19 〉x46 + 〈 20 〉x45 − 〈 21 〉x44

− 〈 21 〉x43 + 〈 21 〉x42 − 〈 22 〉x41 − 〈 22 〉x40 + 〈 22 〉x39 − 〈 22 〉x38

− 〈 22 〉x37 − 〈 22 〉x36 + 〈 22 〉x35 − 〈 23 〉x34 + 〈 24 〉x33 − 〈 23 〉x32

− 〈 23 〉x31 + 〈 23 〉x30 + 〈 23 〉x29 − 〈 24 〉x28 + 〈 24 〉x27 − 〈 24 〉x26

+ 〈 24 〉x25 + 〈 24 〉x24 − 〈 24 〉x23 − 〈 24 〉x22 + 〈 24 〉x21 − 〈 25 〉x20

+ 〈 24 〉x19 + 〈 24 〉x18 − 〈 25 〉x17 + 〈 24 〉x16 + 〈 25 〉x15 − 〈 25 〉x14

+ 〈 24 〉x13 + 〈 24 〉x12 − 〈 25 〉x11 + 〈 25 〉x10 + 〈 23 〉x9 − 〈 24 〉x8

+ 〈 25 〉x7 − 〈 23 〉x6 − 〈 24 〉x5 + 〈 24 〉x4 − 〈 24 〉x3 − 〈 24 〉x2

− 〈 24 〉x− 〈 24 〉

Figure 2: The form of the Gröbner basis for f1, g1.

are occasionally cited as proof that computing the Gröbner basis of such polynomials is an efficient
process. This of course is highly suspect since the bounds do not tell us anything about the growth
of the coefficients. In this connection it is worthwhile considering the following examples.

f1 = 8y7 + y6x− 3y5x+ 64y5 − 35y3x3 + 79y2x,

g1 = 92y6 − 95y5x2 + 56y3x− 87y − 46x7 + 96.

Let B be the normed reduced Gröbner basis of f1, g1 w.r.t. the lexicographic order where x <L
y. If we turn the elements of B into primitive polynomials with integer coefficients (by clearing
denominators) then we obtain two polynomials h1, h2 of the form shown in Figure 2, where 〈n 〉
denotes a positive integer of n decimal digits. This basis took 20 hours, 5 minutes and 13 seconds
to compute using Maple’s package grobner. It is interesting to observe that if we perform the
same computation but with x >L y then the basis is considerably smaller and the time taken is
only 15 minutes and 31 seconds. The machine used was a Sun SparcServer 1000 with six 60Mhz
SuperSPARC cpus and 384Mb of memory (this applies to all the runtimes given below).

If we repeat the experiment with f2(x, y) = f1(x, y) + f1(y, x) and g2(x, y) = g1(x, y) + g1(y, x)
the situation is much worse. The polynomials of the Gröbner basis have the format shown in
Figure 3. The cpu time for this computation was 42 hours, 19 minutes and 39 seconds.

It is well known that computing a Gröbner basis w.r.t. a lexicographic order is usually more
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h1 = 〈 953 〉y + 〈 947 〉x47 + 〈 948 〉x46 + 〈 948 〉x45 + 〈 949 〉x44 − 〈 950 〉x43

− 〈 951 〉x42 + 〈 951 〉x41 − 〈 951 〉x40 − 〈 951 〉x39 + 〈 952 〉x38 + 〈 953 〉x37

+ 〈 953 〉x36 + 〈 953 〉x35 − 〈 952 〉x34 − 〈 953 〉x33 + 〈 953 〉x32 + 〈 953 〉x31

− 〈 952 〉x30 + 〈 953 〉x29 − 〈 953 〉x28 − 〈 954 〉x27 + 〈 954 〉x26 + 〈 954 〉x25

− 〈 953 〉x24 + 〈 954 〉x23 + 〈 953 〉x22 − 〈 954 〉x21 + 〈 954 〉x20 + 〈 954 〉x19

− 〈 954 〉x18 + 〈 954 〉x17 + 〈 954 〉x16 − 〈 954 〉x15 + 〈 953 〉x14 + 〈 954 〉x13

− 〈 954 〉x12 + 〈 954 〉x11 + 〈 954 〉x10 − 〈 954 〉x9 − 〈 954 〉x8 + 〈 954 〉x7

− 〈 954 〉x6 − 〈 953 〉x5 + 〈 953 〉x4 + 〈 953 〉x3 − 〈 953 〉x2 + 9〈 53 〉y
+ 〈 953 〉x− 〈 953 〉

h2 = 〈 22 〉x48 + 〈 22 〉x47 − 〈 21 〉x46 + 〈 23 〉x45 − 〈 24 〉x44 − 〈 25 〉x43

+ 〈 25 〉x42 − 〈 26 〉x41 − 〈 25 〉x40 + 〈 27 〉x39 + 〈 26 〉x38 + 〈 26 〉x37

+ 〈 27 〉x36 − 〈 27 〉x35 − 〈 27 〉x34 + 〈 27 〉x33 + 〈 27 〉x32 − 〈 27 〉x31

+ 〈 28 〉x30 − 〈 28 〉x29 − 〈 28 〉x28 + 〈 28 〉x27 + 〈 28 〉x26 − 〈 28 〉x25

+ 〈 28 〉x24 − 〈 28 〉x23 − 〈 29 〉x22 + 〈 29 〉x21 + 〈 27 〉x20 − 〈 28 〉x19

+ 〈 29 〉x18 − 〈 28 〉x17 − 〈 29 〉x16 + 〈 29 〉x15 + 〈 28 〉x14 − 〈 29 〉x13

+ 〈 29 〉x12 − 〈 28 〉x11 − 〈 28 〉x10 + 〈 27 〉x9 + 〈 28 〉x8 − 〈 28 〉x7

+ 〈 28 〉x6 − 〈 27 〉x5 + 〈 27 〉x4 − 〈 28 〉x3 + 〈 28 〉x2 − 〈 28 〉x+ 〈 27 〉.

Figure 3: The form of the Gröbner basis for f2, g2.
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expensive than w.r.t. a total degree order. The polynomials given in this section provide a striking
example of this phenomenon. Computing the Gröbner basis of f1, g1 using Maple’s tdeg order
(total degree then reverse lexicographic) with x <L y took only 3.9 seconds and the result was
quite small. The same experiment with f2, g2 took only 7.6 seconds and again the result was of
a modest size. These observations suggest that the basis conversion method of Faugère, Gianni,
Lazard and Mora [24] would lead to a reasonable improvement. (See also Trinks [59] on the
question of coefficient size.) Even so the resulting bases would still be as shown above and therefore
quite large.

Exercise 6.10 Find, by hand calculations only, the normed Gröbner basis of

g1 = x3yz − xz2,
g2 = xy2z − xyz,
g3 = x2y2 − z,

using the lexicographic order with x < y. Use Maple to check your answer.

Exercise 6.11 Let G be a set of linear polynomials in the indeterminates x1, . . . , xn (i.e., polyno-
mials of the form a1x1 + · · · + anxn where ai ∈ k for 1 ≤ i ≤ n). Which familiar algorithm does
the Gröbner basis algorithm resemble when applied to G with an admissible ordering?

Exercise 6.12 Let f(x, y) be a non-zero polynomial with complex coefficients. The algebraic curve
defined by f(x, y) is just V(f), i.e., all the solutions in C2 to f(x, y) = 0. The singular points of
the curve are those points on the curve at which both partial derivatives vanish, i.e., they are the
solutions to the simultaneous system

f(x, y) = 0,

fx(x, y) = 0,

fy(x, y) = 0,

where fx is the partial derivative w.r.t. x and similarly for fy. The curve is said to have no multiple
components if f(x, y) is square free.

1. Give two different proofs of the fact that every algebraic curve with no multiple components
has only finitely many singularities. (For one proof use Gröbner bases and for the other use
resultants.)

Can you put an upper bound on the number of singularities in terms of the degree of f?

2. Let

f(x, y) = (x2 + y2 − 1)((x− 1)2 + y2 − 1)((x+ 1)2 + y2 − 1)(x2 + (y − 1)2 − 1).

Find all the singularities of f(x, y) = 0 exactly (use Axiom’s groebner function). Can you
give a geometrical interpretation of the singularities?

Exercise 6.13 Let X = {x1, x2, . . . , xn} be a finite alphabet. Consider a term rewriting system
over X∗ (the set of finite strings over X) in which the rules are bidirectional:

t1 ↔ t′1,

t2 ↔ t′2,

...

ts ↔ t′s,
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where ti, t
′
i ∈ X∗ for 1 ≤ i ≤ s. Thus if T = AtiB and T ′ = At′iB, where A,B ∈ X∗, then T ′ may

be derived from T in a single step and vice versa. (In general, a word W ′ ∈ X∗ is derivable from a
word W ∈ X∗ if W = W ′ or there is a finite sequence of single-step derivations which starts with
W and ends with W ′.)

Consider the elements of X∗ to be monomials of C[X] and define the polynomials

pi = ti − t′i, for 1 ≤ i ≤ s.

Let W , W ′ be arbitrary elements of X∗. It can be shown that W ′ is derivable from W if and only if

W −W ′ ∈ (p1, p2, . . . , ps). (∗)

1. Give an algorithm which solves the derivability problem.

2. Prove the claim made about (∗), i.e., prove that W ′ is derivable from W if and only if (∗)
holds.

[Hint: The ‘only if ’ part is easier so do this first. For the ‘if ’ part write an expression of the
form q1p1 + · · ·+ qsps as a finite sum

∑
εmmpm, where each m is a monomial and εm = ±1.

Now use induction on the number of summands.]
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