
5 Keeping the Data Small: Modular Methods

5.1 Modular gcd of Polynomials in Z[x]
First of all we note the following important fact:

Lemma 5.1 (Gauss) For any f, g ∈ Z[x] (not both zero) we have

cont(fg) = cont(f) cont(g),

pp(fg) = pp(f) pp(g).

Proof It suffices to show that the product of two primitive polyniomials is itself primitive. Let
u, v ∈ Z[x] be primitive, i.e., cont(u) = cont(v) = 1. If cont(uv) 6= 1, i.e., uv is not primitive, then
there is a prime p that divides all the coefficients of uv. Set

u = umx
m + um−1x

m−1 + · · ·+ u0,

v = vnx
n + vn−1x

n−1 + · · ·+ v0.

Since u, v are primitive there are indices j, k such that p 66 | uj and p 6 | vk. Note that the coefficient
of xj+k in uv is

ujvk + uj+1vk−1 + · · ·+ uj+kv0 + uj−1vk+1 + · · ·+ u0vk+j

Choose j, k to be as small as possible; then the fist summand above is not divisible by p while all
the rest are. It follows that the coefficient as a whole is not divisible by p which is a contradiction.
2

In fact the lemma holds if Z is replaced with any unique factorization domain; indeed the same
proof goes through. An immediate consequence of the lemma is the following.

Lemma 5.2 For any f, g ∈ Z[x] (not both zero) we have

cont(gcd(f, g)) = gcd(cont(f), cont(g)),

pp(gcd(f, g)) = gcd(pp(f),pp(g)).

Proof Let h = gcd(f, g) so that we have f = f̂h and g = ĝh. Of course gcd(f̂ , ĝ) = 1 since

gcd(f̂ , ĝ)h divides both f and g and so it divides their gcd, i.e., it divides h. It follows that

gcd(cont(f̂), cont(ĝ)) = 1 and gcd(pp(f̂),pp(ĝ)) = 1 (because both of these divide gcd(f̂ , ĝ)).

By Gauss’ Lemma, cont(f) = cont(f̂) cont(h) and cont(g) = cont(ĝ) cont(h). It follows that

gcd(cont(f), cont(g)) = cont(h) since gcd(cont(f̂), cont(ĝ)) = 1.

Similarly, pp(f) = pp(f̂) pp(h) and pp(g) = pp(ĝ) pp(h). Since gcd(pp(f̂),pp(ĝ)) = 1 it follows
that gcd(pp(f),pp(g)) = pp(h). 2

It follows that we may restrict our attention to primitive polynomials and the result will always be
a primitive polynomial. Another useful observation is that

lc(gcd(f, g))| gcd(lc(f), lc(g))

43

(prove this). If f = amx
m + am−1x

m−1 + · · ·+ a0 and p is a positive integer then we define

(f mod p) = (am mod p)xm + (am−1 mod p)xm−1 + · · ·+ (a0 mod p)

which is a polynomial in Zp[x]. During this section, we abbreviate (f mod p) to fp. Note that if
p 6 | lc(f) then deg(fp) = deg(f); the converse is also true.

Exercise 5.1 Redo the proof of Lemma 5.1 but using u mod p and v mod p to derive a contradic-
tion.

Let us take another look at the problem of finding the gcd of

A = x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5,

B = 3x6 + 5x4 − 4x2 − 9x+ 21.

Put
A = PH, B = QH,

where H = gcd(A,B). Consider these equations modulo 5, i.e., view them as holding in the
ring Z5[x]. By computing in Z5[x] we see that gcd(A5, B5) = 1. We have 5 6 | lc(H) since
5 6 | gcd(lc(A), lc(B)) and so deg(H5) = deg(H). Thus deg(H) ≤ deg(gcd(A5, B5)) = 0 so that
deg(H) = 0. Thus H = 1 and so gcd(A,B) = 1.

Suppose we want the gcd of two arbitrary primitive polynomials of Z[x]. Let p1, . . . , pk be a
sequence of primes. For each i we can compute the gcd modulo pi, i.e., compute in Zpi [x]. The goal
is to combine these results to obtain the result in Z[x]. (As an extreme case we could compute with
only one prime which is so large that gcd(Ap, Bp) = gcd(A,B) but this is of little advantage.) Note
that by computing in Zp[x] for some prime p of reasonable size we avoid completely the problem of
intermediate expression swell as far as coefficients are concerned. Clearly it is well worth trying to
develop a method along these lines. We have three problems to address:

1. How do we combine the various results in the Zpi [x] into a single result in Z[x]?

2. Given A,B ∈ Z[x] how big can the coefficients of gcd(A,B) be? We need to know this because
we intend to work with modular arithmetic and then recover integer coefficients. To put it
simply suppose we are told that an integer a taken modulo 17 gives 15. All we can deduce
from this information is that a = 17q + 15 for some integer q. However if we are also told
that |a| < 8 then −8 < a < 8 and we can deduce that a = −2. We discuss this point in more
detail below.

3. Which primes should we choose? Are there any that should be avoided?

We illustrate the preceding points with a more detailed example. Take

A = 3x4 + 4x3 − 6x2 − 3x+ 2,

B = 9x5 + 21x4 + 6x3 + x2 + x− 2.

Put
H = gcd(A,B).

44

Note that A, B are primitive so that H must be primitive. Also deg(H) ≤ min(deg(A),deg(B)) = 4.
Moreover an easy computation shows that A 6 | B and so deg(H) < 4, thus we may put

H = h3x
3 + h2x

2 + h1x+ h0.

Our aim is to work modulo p where p is a prime (possibly using several p) and compute gcd(Ap, Bp)
using Euclid’s algorithm in Zp[x] (since p is prime it follows that Zp is a field and Euclid’s algorithm
applies). If we are lucky then the gcd thus obtained is equal to Hp (actually we have to modify
this a little, as we shall see near the end of the example). We are not always lucky, e.g., x and
x + 5 are coprime so their gcd is 1 but taken modulo 5 their gcd is x. Notice that if p 6 | lc(A) or
p 6 | lc(B) then p 6 | lc(H) and so for such a p we have deg(gcd(Ap, Bp)) ≥ deg(H). Moreover if
deg(gcd(Ap, Bp)) > 3 then we know that gcd(Ap, Bp) 6= Hp and so we must reject p as ‘unlucky’.

Now working modulo 2 we have

A2 = x4 + x,

B2 = x5 + x4 + x2 + x,

and from Euclid’s algorithm (in the ring Z2[x]) we have

gcd(A2, B2) = x4 + x.

This shows that there must be something wrong with 2 as a modulus. The next prime, 3, is also a
bad choice because it divides lc(A) and lc(B). Now working modulo 5 we have

A5 = 3x4 + 4x3 + 4x2 + 2x+ 2,

B5 = 4x5 + x4 + x3 + x2 + x+ 3,

and
F5 = gcd(A5, B5) = x3 + 4x2 + 2x+ 1.

This shows that 5 might be acceptable in the sense that F5 = H5 so we proceed under this
assumption. First of all we view F5 as an element of Z[x] and check to see if F5|A and F5|B
for if this is so then H = F5 and we have found the answer. Unfortunately F5 6 | A. This does
not mean that 5 was a bad choice: it might be a bad choice or (if we are lucky) we have not yet
recovered the coefficients of H completely because at least one of them has been ‘collapsed’ by
taking it modulo 5. We now do the same with the next prime to obtain

F7 = gcd(A7, B7) = x3 + 5x+ 4,

and F7 6 | A. Assuming that both 5 and 7 are good choices of moduli we now have the following
four pairs of simultaneous congruences:

h3 ≡ 1 (mod 5), h3 ≡ 1 (mod 7),
h2 ≡ 4 (mod 5), h2 ≡ 0 (mod 7),
h1 ≡ 2 (mod 5), h1 ≡ 5 (mod 7),
h0 ≡ 1 (mod 5), h0 ≡ 4 (mod 7).

Let us find the possible solutions to the last pair of congruences. The first congruence shows that
h0 = 1 + 5q for q ∈ Z. Substituting this into the second congruence we obtain:

5q ≡ 3 (mod 7).

45

Now
3 · 5− 2 · 7 = 1.

(The numbers 3 and −2 can be obtained from the Extended Euclidean Algorithm applied to 5 and
7.) Thus

3 · 5 ≡ 1 (mod 7)

i.e., 3 is the multiplicative inverse of 5 in the field Z7 (remember that a congruence modulo p is the
same as an equation in the field Zp). We may now deduce that

q ≡ 3 · 3 (mod 7),

≡ 2 (mod 7).

So for a simultaneous solution we take q = 2 + 7q′ in 1 + 5q which gives us 11 + 35q′. What we
have now is that h0 ≡ 11 (mod 35). Doing the same for the other pairs of congruences we obtain

F35 = x3 + 14x2 + 12x+ 11

as the candidate for H35. (Notice that we now have a candidate with modulus 35 even though
we have only carried out gcd computations with the moduli 5 and 7.) If all the coefficients of H
are in the range −17 < h ≤ 18 then we already have H and not just H35. A simple calculation
shows that F35 6 | A. But before giving up we should re-examine one crucial point in the preceding
calculations. When finding gcd(A5, B5) and gcd(A7, B7) we produced monic polynomials for the
results. These are perfectly valid but then so is any non-zero constant multiple of them! When
calculating gcd(A5, B5) we are really trying to obtain H5 and the leading coefficient of H might
not be 1 so that the leading coefficient of H5 need not be 1 either. If we knew lc(H) there would be
no problem: we would simply find the monic gcd as before and then multiply it with lc(H) mod 5.
(Note here an important consequence of the fact that we use only primes p that do not divide
gcd(lc(A), lc(B)). For such primes we have that lc(H) mod p is not 0.) Unfortunately we do not
know lc(H) but we do know that lc(H)|c where c = gcd(lc(A), lc(B)) = 3 (equality need not hold—
consider (x + 1)(2x + 3) and (x + 1)(2x + 5)). It follows that if we multiply F5 with (c mod 5) in
the ring Zp[x] then the result, interpreted as a polynomial from Zp[x], is dH5 for some non-zero
constant d. Similarly for F7. This replaces F5, F7 with

F ∗5 = 3x3 + 2x2 + x+ 3,

F ∗7 = 3x3 + x+ 5.

These now yield the candidate
F ∗35 = 3x3 + 7x2 + x− 2.

If we are lucky then when this is viewed as an element of Z[x] it is just eH for some constant e.
Since H must be primitive all we have to do in order to eliminate e is to take the primitive part of
F ∗35. Clearly F ∗35 is primitive and in fact it divides both A and B so that it is the required gcd.

Exercise 5.2 We obtained F ∗35 from F ∗5 and F ∗7 . Note that, in fact, we obtain the same result from
3F35 (after reducing all coefficients modulo 35). Is this just a coincidence?

46

5.2 The Chinese Remainder Problem

Suppose that D is an integral domain in which a version of the Euclidean algorithm holds (such
rings are called Euclidean domains—it can be shown that every Euclidean domain is a UFD). For
our applications D is either Z or k[x] where k is a field. We are given remainders r1, . . . , rn ∈ D and
moduli m1, . . . ,mn ∈ D−{0} which are pairwise coprime. (Two elements are said to be coprime if
their gcd is 1. For integers this means literally that the gcd is the number 1 while for polynomials
this means that the gcd is a constant.) The problem is to find r ∈ D such that

r ≡ ri (mod mi)

for 1 ≤ i ≤ n. For simplicity let n = 2. We have

r ≡ r1 (mod m1) (1)

r ≡ r2 (mod m2) (2)

Every solution of (1) has form r1 +σm1. So we have to find σ such that r1 +σm1 ≡ r2 (mod m2).
We have gcd(m1,m2) = 1 = cm1 + dm2 and so cm1 ≡ 1 (mod m2), where c can be computed by
the Extended Euclidean algorithm. (In more highbrow notation we write c = m−11 in the ring of
remainders modulo m2.) Now choose σ = c(r2 − r1) (mod m2). Thus

r1 + σm1 ≡ r1 + c(r2 − r1)m1 (mod m2)

≡ r1 + r2 − r1 (mod m2).

Note that the preceding argument applies to any Euclidean domain.

Theorem 5.1 The Chinese Remainder Problem always has a solution which can be computed by
the algorithm CRA2 given below.

Algorithm: CRA2(r1, r2,m1,m2) 7→ r

1. c := m−11 mod m2;

2. r′1 := r1 mod m1;

3. σ := c(r2 − r′1) mod m2;

4. r := r′1 + σm1;

We note that the output r of the algorithm has the property that the simultaneous congruences

x ≡ r1 (mod m1)

x ≡ r2 (mod m2)

hold for x if and only if
x ≡ r (mod m1m2).

For if x satisfies the two congruences then we have

x ≡ r (mod m1)

x ≡ r (mod m2)

47

so that m1 | x− r and m2 | x− r. Now the fact that gcd(m1,m2) = 1 implies that m1m2 | x− r so
that x ≡ r (mod m1m2). On the other hand if x ≡ r (mod m1m2) then x ≡ r (mod mi) for
i = 1, 2 and the result follows since r ≡ ri (mod mi) for i = 1, 2.

We can solve CRPn (i.e., the Chinese Remainder Problem with n remainders) by applying
CRA2 recursively: given the problem

r ≡ r1 (mod m1)

r ≡ r2 (mod m2)

r ≡ r3 (mod m3)

...

we solve the first two congruences and obtain r12 as the answer. The problem now reduces to
solving

r ≡ r12 (mod m1m2)

r ≡ r3 (mod m3)

...

Just as for the case of two remainders we have that

x ≡ ri (mod mi), 1 ≤ i ≤ n,

if and only if
x ≡ r (mod m1m2 · · ·mn).

This explains the utility of the Chinese Remainder Theorem. We can work with conveniently sized
moduli m1, . . . ,mn and then construct the result we would get by working with the single large
modulus m1m2 · · ·mn.

It is now fairly easy to deduce:

Theorem 5.2 For the case D = Z the solution r computed by CRAn is bounded as follows

0 ≤ r < m1m2 · · ·mn.

Moreover there is exactly one such r.

Theorem 5.3 For the case D = k[x] the solution r(x) computed by CRAn is either 0 or bounded
in degree as follows

deg(r) < deg(m1) + · · ·+ deg(mn).

Moreover there is exactly one such r(x).

To sum up, stated purely as a theorem we have:

Theorem 5.4 (Chinese Remainder Theorem for the Integers) Assume r1, r2 . . . , rn ∈ Z and
m1,m2, . . . ,mn ∈ Z where mi > 1, for 1 ≤ i ≤ n, and mi, mj are comprime (i.e., gcd(mi,mj) = 1)
for 1 ≤ i < j ≤ n. Then there is an integer x such that

x ≡ r1 (mod m1)

x ≡ r2 (mod m2)

...

x ≡ rn (mod mn).

48

Moreover setting M = m1m2 · · ·mn we have that x + qM is also a solution for all q ∈ Z and all
solutions are of this form.

Exercise 5.3 Suppose that we have two moduli which are not coprime but still wish to solve the two
simultaneous congruences as in the case when m1, m2 are coprime. Find necessary and sufficient
conditions for this to be possible and give an algorithm.

In fact we can give a direct solution to the general case of the problem as follows. Let Mi =
m1m2 · · ·mi−1mi+1 · · ·mn for 1 ≤ i ≤ n. Find b1, b2, . . . , bn such that

biMi ≡ 1 (mod mi),

for 1 ≤ i ≤ n (the bi exist because gcd(Mi,mi) = 1). Then x is a solution to the system

x ≡ r1 (mod m1)

x ≡ r2 (mod m2)

...

x ≡ rn (mod mn)

if and only if
x ≡ r1b1M1 + r2b2M2 + · · ·+ rnbnMn (mod M).

We now take a closer look at the integer case. In applications we want to find one or more integers by
calculating with several moduli and then combining the results. How do we choose the moduli? Of
course they must be coprime—in many applications we use primes for the moduli so the coprimeness
condition follows automatically. The solution r which we recover from the residues satisfies

0 ≤ r < M,

where M = m1m2 · · ·mn. Because we are trying to recover an integer which might be positive or
negative it is much more convenient to write this inequality as

−M/2 < r′ ≤M/2,

where

r′ =

{
r, if r ≤M/2;
r −M if r > M/2.

Note that r′ is also a solution to the Chinese Remainder Problem since r ≡ r −M (mod M).
Suppose that the integer we are trying to recover is R. Just as in the discussion in §5.1, all we can
deduce so far is that R = qM + r for some integer q. However if we also know that |R| < M/2 then
we may immediately deduce that R = r′. Thus if we have an upper bound B for |R| then we simply
need to ensure that the moduli are chosen so that M > 2B. To put it another way if M > 2B then
in the range [−B,B] there is exactly one symmetric remainder modulo M since if −B ≤ r ≤ B
then r −M < r − 2B ≤ B − 2B = −B while r + M > r + 2B ≥ −B + 2B = B. Typically B is
fairly large (after all the reason for going to all this trouble is because R is large and we want to
avoid arithmetic with large integers). We therefore have to strike a balance between small moduli,
in which case we will need very many of them, and moduli which are so large that we gain little

49

if any advantage in the arithmetic. Typically the moduli are chosen as large as possible provided
they fit into a word of memory.

The preceding discussion also leads us to forego the preference induced by most mathematics
texts (and, so far, these notes): in discussing arithmetic modulo m the remainders r are chosen in
the range 0 ≤ r < m. For our applications of the Chinese Remainder Theorem it is more natural
to choose the remainders in the range −m/2 < r ≤ m/2. This latter representation is called
symmetric. (Maple allows the user to switch to the symmetric representation by the assignment
‘mod‘:=mods, the standard representation, which is the default, can be regained by ‘mod‘:=modp.)

For an interesting account of the various guises of the Chinese Remainder Theorem see P. J. Davies
and R. Hersh [22] (the book as a whole is worth reading). Here we simply note that in one form
it expresses an isomorphism of rings which, in the integer case, is:

Zm1m2
∼= Zm1

×Zm2
,

when m1, m2 are coprime (for the meaning of the right hand side see Exercise 4.17). It is only fair
to point out that the Greek mathematician Nikomachos gave a version of the theorem at about the
same time as Sun-Tsu who is normally credited with it (both date from the first century A.D.)

Finally, the Chinese Remainder Theorem and associated algorithm are fundamental to various
applications in computer algebra. It is therefore essential that you understand fully both the result
and its applications.

5.3 Bound on the Coefficients of the gcd

Let A,B ∈ Z[x]. It is tempting to conjecture that the coefficients of gcd(A,B) can be no larger in
absolute value than the largest absolute value of the coefficients of A or B. Unfortunately this is
not the case, for example consider

A = x3 + x2 − x− 1 = (x+ 1)2(x− 1);
B = x4 + x3 + x+ 1 = (x+ 1)2(x2 − x+ 1);

gcd(A,B) = x2 + 2x+ 1 = (x+ 1)2.

Clearly the problem of finding bounds for gcd(A,B) is solved if we can find bounds for the coefficients
of the divisors of a given polynomial; we proceed to address this question for polynomials from C[x]
(we will give an overview of the situation, details can be found in [67]).

Let
P = p0x

d + p1x
d−1 + · · ·+ pd,

where p0 6= 0 (note the indexing of the coefficients; this makes subsequent expressions a little
simpler). Let α1, α2, . . . , αd be all the d complex roots of P so that

P = p0(x− α1)(x− α2) · · · (x− αd), (6)

some roots might be repeated of course. Recall that for a complex number α = a+ ib, its absolute

value is defined by |α| =
(
a2 + b2

)1/2
. We define two measures as follows.

||P || =
(
|p0|2 + |p1|2 + · · ·+ |pd|2

)1/2
,

M(P) = |p0|
d∏
i=1

max(1, |αi|).

50

The second measure has the very useful, and obvious, property that it is multiplicative, i.e.,
M(P1P2) = M(P1)M(P2). It follows that if P and Q are monic (i.e., their leading coefficients
are 1) and P divides Q then M(P) ≤ M(Q). Although M(P) is difficult to compute it can be
expressed as

M(P) = exp

(∫ 1

0

log |P (e2πit)| dt
)
. (7)

From this it is then possible to show that

M(P) ≤ ||P ||, (8)

which was first proved by Landau (1905) by different methods. Now considering the expansion of
the r.h.s. of (6) it is easy to show that

|pi| ≤
(
d

i

)
M(P),

for 0 ≤ i ≤ d. The last two inequalities can now be used to derive the desired bound on the
coefficients of a divisor of P .

Theorem 5.5 Let Q = q0x
r + q1x

r−1 + · · ·+ qr be a polynomial in C[x] that divides P . Then

|qi| ≤
(
r

i

)
|q0|
|p0|
||P ||

for 0 ≤ i ≤ r.

Proof We have

|qi| ≤
(
r

i

)
M(Q).

If P and Q are monic, we have M(Q) ≤M(P) and the claim follows from (8).
Finally if P or Q is not monic we proceed by observing that p−10 P is monic and divides the

monic polynomial q−10 Q. 2

This result was observed by Mignotte [44]. Note that we can simplify the r.h.s. of the inequality
to obtain

|qi| ≤ 2r
|q0|
|p0|
||P || ≤ 2d

|q0|
|p0|
||P ||,

(justify the first inequality; there is a very simple reason). Finally if P,Q ∈ Z[x] then of course
|q0| ≤ |p0| so that we finally obtain the inequality

|qi| ≤ 2d||P ||.

We will refer to this as the Landau-Mignotte inequality.

Exercise 5.4 Prove that if f(x) is non-constant and (Riemann) integrable then

exp

(∫ 1

0

log f(x) dx

)
≤
∫ 1

0

f(x) dx. (9)

51

For this use the fact that if a1, a2, . . . , an are numbers then

a1 + a2 + · · · an
n

≤ (a1a2 · · · an)1/n.

Remember that an integral is the limit of a sum. Use (9) to derive (8) from (7). (Warning: this
exercise is quite hard.)

Exercise 5.5 Let A = amx
m + am−1x

m−1 + · · · + a0 and B = bnx
n + bn−1x

n−1 + · · · + b0 be
polynomials in Z[x], where m = deg(A) and n = deg(B). Show that the absolute value of each
coefficient of gcd(A,B) is bounded by

2min(m,n) gcd(am, bn) min

 1

|am|

(
m∑
i=0

a2i

)1/2

,
1

|bn|

(
n∑
i=0

b2i

)1/2
 .

5.4 Choosing Good Primes

There is a problem with the modular approach: given A,B ∈ Z[x] we clearly must choose a prime p
that does not divide both lc(A) and lc(B). Now suppose that

A = PG, B = QG.

Recall that for a polynomial F , Fp denotes (F mod p). We have

Ap = PpGp, Bp = QpGp.

Unfortunately Gp might not be the gcd of Ap, Bp modulo p. For example take

A = x− 3, B = x+ 2, p = 5.

Clearly gcd(A,B) = 1 but
A5 = B5 = x+ 2

so that gcd(A5, B5) = x+ 2.

Lemma 5.3 Let A,B ∈ Z[x] and p a prime that does not divide both lc(A), lc(B). Then

deg(gcd(Ap, Bp)) ≥ deg(gcd(A,B)).

Proof gcd(A,B)p divides both Ap and Bp and so it divides gcd(Ap, Bp). Now deg(gcd(Ap, Bp)) ≥
deg(gcd(A,B)p) but p 6 | lc(gcd(A,B)) and so deg(gcd(A,B)p) = deg(gcd(A,B)). 2

Let us call a prime p which doesn’t work unlucky, i.e., gcd(Ap, Bp) 6= gcd(A,B)p (to be strictly
accurate what we mean here is that gcd(Ap, Bp) 6= c gcd(A,B)p for any constant c—we drop c
under the convention that in Zp[x] we normalize polynomials to have 1 as leading coefficient when
we are thinking of gcd’s). Suppose that we have two primes p1, p2 which meet the assumption
of the last lemma. If deg(gcd(Ap1 , Bp1)) > deg(gcd(Ap2 , Bp2)) then we can immediately deduce
that p1 is unlucky (why?). How many unlucky primes are there? In order to answer this question

52

we need a faithful old workhorse of nineteenth century elimination theory which was introduced by
J. Sylvester. Put

A = amx
m + am−1x

m−1 + · · ·+ a0,

B = bnx
n + bn−1x

n−1 + · · ·+ b0.

We assume that neither of these polynomials is 0. The resultant of A, B is

Res(A,B) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

am am−1 . . . a0
am am−1 . . . a0

· ·
· ·

· ·
· ·

am am−1 . . . a0
bn bn−1 . . . b0

bn bn−1 . . . b0
· ·

· ·
· ·
· ·

bn bn−1 . . . b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where there are n rows of a-entries, m rows of b-entries and the blank spaces consist of 0. In the
preceding we allow the possibility that one of am, bn might be 0. Strictly speaking we should thus
use a notation such as Resm,n(A.B) but m, n are always understood from the context.

Theorem 5.6 Suppose that am 6= 0 or bn 6= 0. Then A and B have a non-constant common factor
if and only if Res(A,B) = 0. (Recall that we assumed A 6= 0 and B 6= 0.)

Proof First of all we

Claim: A and B have a non-constant common factor if and only if there are polynomials φ and ψ,
at least one of which is non-zero and of degrees strictly less than m and n respectively, such
that ψA = φB.

The proof is simple: if A and B do have a non-constant common factor H then we may put
A = φH, B = ψH so that ψA = φB and clearly deg(φ) < deg(A), deg(ψ) < deg(B). Conversely,
suppose that ψA = φB and consider the irreducible factors of B. By the uniqueness of factorization
each irreducible factor of B must appear amongst the irreducible factors of ψA (up to a constant
multiple). The corresponding factors from ψA cannot all come from ψ because deg(ψ) < deg(B).
This completes the proof of the Claim.

Now put
φ = αmx

m−1 + · · ·+ α1,

ψ = βnx
n−1 + · · ·+ β1.

53

When can we have ψA = φB? Multiplying the two sides out and equating coefficients of corre-
sponding powers of x we see that this is equivalent to:

a0β1 = b0α1,

a1β1 + a0β2 = b1α1 + b0α2,

...

amβn = bnαm.

We view these as a set of homogeneous equations in the m + n unknowns α1, . . . , αm, β1, . . . , βn.
Now if A, B have a non-constant common factor then there are non-zero φ, ψ satisfying ψA = φB
and so the equations have a non-zero solution. It follows that Res(A,B) = 0. (What we have used
here is that if MX = 0 is a set of equations in matrix notation where M is a square matrix then
a non-zero solution exists in Q if and only if det(M) = 0.) Conversely if Res(A,B) = 0 then the
equations have a non-zero solution in Q. But given such a solution we may clear denominators and
so obtain a solution in Z. This solution then gives us non-zero φ, ψ ∈ Z[x] such that ψA = φB and
it follows from the Claim that A, B have a non-constant common factor. 2

It is worth noting that the resultant can be defined for f, g ∈ D[x] where D is any unique factor-
ization domain. It is clear that the resultant is then an element of D. The preceding theorem also
holds in this general case (in the proof we replace Z with D; in place of Q we use the so called field
of fractions of D which is constructed from D in exactly the same way that Q is constructed from
Z; in fact for this construction we only need D to be an integral domain). In this more general
situation we sometimes indicate x explicitly by writing Resx(f, g).

Lemma 5.4 Let A, B, p, Ap, Bp be as above (so p does not divide the leading coefcient of one of
the polynomials) and put G = gcd(A,B). Assume that Ap 6= 0 and Bp 6= 0. If p 6 | Res(A/G,B/G)
then gcd(Ap, Bp) = Gp (recall that this equality is to be interpreted up to non-zero constant multiples
of the polynomials).

Proof A/G, B/G are coprime, Gp 6= 0 and

gcd(Ap, Bp) = Gp gcd(Ap/Gp, Bp/Gp).

Now the conclusion of the lemma does not hold if and only if gcd(Ap/Gp, Bp/Gp) 6= 1. Since
Ap 6= 0 and Bp 6= 0 it follows that Ap/Gp 6= 0 and Bp/Gp 6= 0. If gcd(Ap/Gp, Bp/Gp) 6= 1
then Res(Ap/Gp, Bp/Gp) = 0. But this means that Res(A/G,B/G) ≡ 0 (mod p), in other words
p | Res(A/G,B/G) which is contrary to assumption. 2

Note that in our case we choose primes p that fail to divide one of the leading coefficients. In general
this ensures only that one of the polynomials is non-zero modulo p. However our polynomials are
primitive and so no prime divides all of the coefficients of either one and hence neither goes to 0
modulo p. It is possible that the degree of one of them drops but the degree of the other will
not drop, this is the reason for not insisting that both am 6= 0 and bn 6= 0 in the definition of the
resultant. Note also that Res(A/G,B/G) 6= 0 since A/G, B/G do not have a non-constant common
factor (as G is their gcd); Theorem 5.6 now completes the claim. Thus the lemma tells us that
there are only finitely many bad primes so that if we keep trying we are bound to find enough good
ones. Of course if we knew Res(A/G,B/G) we could avoid the bad ones altogether but as we do
not know G we cannot find the resultant (at least not by direct computation).

54

Algorithm: MODGCD(A,B) 7→ G

(A,B ∈ Z[x] are primitive.)

1. g := gcd(lc(A), lc(B));

M := 2g Landau Mignote Bound(A,B);

2. p := new prime not dividing g;

3. Cp := gcd(Ap, Bp); (ensure lc(Cp) = 1)

Gp := (g mod p)Cp in Zp[x]

4. if deg(Gp) = 0 then return 1 fi;

P := p;

G := Gp;

5. while P ≤M do

p := new prime not dividing g;

Cp := gcd(Ap, Bp); (ensure lc(Cp) = 1)

Gp := (g mod p)Cp;

if deg(Gp) < deg(G) then goto 4 fi; (all the previous primes were unlucky)

if deg(Gp) = deg(G) then

G := CRA(G,Gp, P, p); (we apply CRA2 to corresponding coefficients of G, Gp)

P := pP

fi

od

6. H := pp(G);

if H | A and H | B then return H fi;

goto 2 (all the primes were unlucky)

We make some remarks concerning the algorithm.

1. In step 1 we multiply the Landau-Mignotte bound by g = gcd(lc(A), lc(B)). This enables us in
steps 3 and 4 to normalize gcd(Ap, Bp) so that it has leading coefficient (g mod p).

2. In steps 2 and 3 we require new primes. Every CA system has a large list of primes whose size
is about one computer word. Thus in practice we can obtain new primes quickly.

3. Remember that in applying CRA we centre solutions around 0 since we need to recover signed
integers (this is also the reason for multiplying the Landau-Mignotte bound by 2 in step 1).

55

We now look at an example. Let

A = (x− 2)(x+ 1)(x3 + 2x− 1)

= x5 − x4 − 3x2 − 3x+ 2,

B = (x− 2)2(x+ 1)2

= x4 − 2x3 − 3x2 + 4x+ 4.

This yields
g = 1,

M = 2 · 1 · 24 · 1 ·min(
√

24,
√

46)

≤ 160.

We then have:

Algorithm:

p = 2 : G2 = x3 + x,

P = 2,

G = x3 + x,

p = 3 : G3 = x2 − x+ 1, which shows that 2 was unlucky;

P = 3,

G = x2 − x+ 1

p = 5 : G5 = x2 − x− 2,

G = x2 − x− 2, this is gcd(A,B).

The example shows that it pays to check for G | A and G | B in the middle of the algorithm as
well. However this is a fairly expensive test so we don’t necessarily make much gain in speed on the
average (a reasonable compromise is to compare the result at each stage with that of the previous
stage and if there has been no change then carry out the divisibility test).

5.5 Modular gcd Algorithm for Multivariate Polynomials

Here we consider elements of Z[x1, . . . , xn]. We could try to work in Q(x1, . . . , xn−1)[xn] but then
we only get the dependence of the gcd on xn, the other indeterminates are just units. Alternatively
we could use Gauss’ lemma:

gcd(A,B) = gcd(cont(A), cont(B)) gcd(pp(A),pp(B)).

Here the first gcd is for elements from Z[x1, . . . , xn−1] which may be computed recursively while
the second gcd is computed in Q(x1, . . . , xn−1)[xn] which may be computed by Euclid’s algorithm.
This works but the coefficients increase in size far too much.

We generalize the modular approach by working in Z[x1, . . . , xn−1][xn] where our coefficients
come from Z[x1, . . . , xn−1] and the main indeterminate is xn. In this method we compute modulo
irreducible polynomials in Z[x1, . . . , xn−1]. In fact we use linear polynomials of the form xs − c
where 1 ≤ s < n and c ∈ Z, these make the computations easier.

56

Consider now the polynomial ring R[y][x] where R is a UFD (so that R[y] is also a UFD). In
our case R = Z[x1, . . . , xn−2], y = xn−1 and x = xn. For a polynomial F ∈ R[y][x] and r ∈ R we
let Fy−r stand for (F mod y − r). Note that this is the result of substituting r for y in F .

Lemma 5.5 Let A,B ∈ R[y][x] and r ∈ Z. If y − r does not divide both lcx(A) and lcx(B) then

degx(gcd(Ay−r, By−r)) ≥ degx(gcd(A,B)).

Lemma 5.6 Let A, B, r be as above and G = gcd(A,B). If y − r 6 | Resx(A/G,B/G) then
gcd(Ay−r, By−r) = Gy−r.

The analogue to the Landau-Mignotte bound is much easier to derive: let C be a factor of A in
R[y][x]. Then degy(C) ≤ degy(A); this follows from the fact that R is a UFD and so has no
zero-divisors.

Algorithm: MODGCDm(A,B, n, s) 7→ C;

(n is the number of variables and s is the index of the variable being eliminated.)

1. if s = 0 then C := univariate gcd(A,B); return C fi;

2. M := 1 + min(degxs
(A),degxs

(B));

3. r := an integer s.t. degxn
(Axs−r) = degxn

(A) or degxn
(Bxs−r) = degxn

(B);

Cr := MODGCDm(Axs−r, Bxs−r, n, s− 1);

4. R := xs − r;
m := 1;

C := Cr;

5. while m ≤M do

r := a new integer s.t. degxn
(Axs−r) = degxn

(A) or degxn
(Bxs−r) = degxn

(B);

Cr := MODGCDm(Axs−r, Bxs−r, n, s− 1);

if degxn
(Cr) < degxn

(C) then goto 3 fi;

if degxn
(Cr) = degxn

(C) then

C := CRA(C,Cr, R, xs − r);
R := (xs − r)R;

m := m+ 1

fi

od;

6. if C | A and C | B then return C fi;

goto 2

57

We look at an example in Z[x, y]. Let

A = (2xy − y + x2)(xy2 + x3 − 3),

B = (2xy − y + x2)(y2 − xy + 2).

We have
M = 1 + min(degx(A),degx(B)) = 4.

The algorithm proceeds as follows:

r = 1 : gcd(Ax−1, Bx−1) = y + 1.

r = 2 : gcd(Ax−2, Bx−2) = 3y + 4. Now we use the Chinese Remainder Theorem for polynomials to
obtain

C = (2x− 1)y + (3x− 2).

r = 3 : gcd(Ax−3, Bx−3) = 5y + 9. This time the CRT yields

C = (2x− 1)y + x2

and this is the gcd (the algorithm would actually take another step).

Unfortunately there is a problem with the algorithm: we have to use the CRT in Z[x1, . . . , xn−1] but
this is not a Euclidean domain. The problem we must solve is: given p1(x1, . . . , xs), p2(x1, . . . , xs)
and moduli r1, r2 find p(x1, . . . , xs) (all in Z[x1, . . . , xs]) such that

p ≡ p1 (mod r1),

p ≡ p2 (mod r2),

such that degxs
(p) < degxs

(r1) + degxs
(r2). We can solve the problem by using the embedding

Z[x1, . . . , xs] ⊆ Q(x1, . . . , xs−1)[xs].

Now the right hand side is a Euclidean domain so we solve our problem here to obtain a unique
solution p such that degxs

(p) < degxs
(r1) + degxs

(r2). Now if p ∈ Z[x1, . . . , xs] we are done and
otherwise the irreducible polynomials were unlucky so we have to start again.

The modular approach is the fastest currently known. Most systems start with some heuristics.
We note also that all systems use a recursive representation of polynomials for this algorithm.

58

	Keeping the Data Small: Modular Methods
	Modular gcd of Polynomials in Z[x]
	The Chinese Remainder Problem
	Bound on the Coefficients of the gcd
	Choosing Good Primes
	Modular gcd Algorithm for Multivariate Polynomials

