COMPUTER ALGEBRA (2018-2019) EXERCISES 3
OPERATIONS ON IDEALS

Deadline: Monday 25 March, 4.00pm.

This final set of exercises is in two contrasting parts. The first part is the degree exam for April
2016, the aim is to give you timetabled revision and feedback. The second part consists of two
example constructions of ideals together with results about them and how they relate to varieties.
You are then asked to prove some corresponding results about a third construction and use one
of these in a little practical work with Axiom.

Naturally the exam questions have a certain amount of bookwork. In answering these do
not just copy out large chunks of the course notes (if you do you will lose credit). Just give a
straightforward answer in your own words, keep it simple and direct. I have left the questions
intact since the aim is to give you practice in answering genuine exam questions. Note that in the
exam you have a choice of two out of three questions. This applies to this exercise. Just as for the
exam, if you attempt all three questions I will mark your three attempts and give you credit for
the best two. In the actual exam it is a very bad idea to attempt more than two questions due to
time constraints. However for the purposes of this exercise you might wish to attempt all three if
you have time.

The marking will be carried out as follows: the exam part will be marked as normal (each
question out of 25) so that your maximum mark here is 50. This will then be halved to give a
score out of 25. (I will also give the mark out of 25 for each question you attempt as part of
feedback.) The other part has a maximum score of 25 and each sub-part will be marked out of the
indicated sub-total (see below). The two separate marks will then be added together and scaled
to be out of 40 (the mark being rounded to the nearest integer). This ensures that the total for
the three sets of exercises of the course is out of 100 (recall that the first was out of 20 while the
other two are out of 40).

Submission: Submit your handwritten answers, stapled at the top left corner, to all the exercises
to the ITO. There is no electronic submission for these exercises.

Good Scholarly Practice: Please remember the University requirement as regards all assessed
work for credit. Details and advice about this can be found at:

http://web.inf.ed.ac.uk/infweb/admin/policies /academic-misconduct

and links from there. Note that, in particular, you are required to take reasonable measures to
protect your assessed work from unauthorised access. For example, if you put any such work on a
public repository then you must set access permissions appropriately (generally permitting access
only to yourself, or your group in the case of group practicals).

81. The April 2016 Exam. Instructions to candidates: Answer any two questions. All questions
carry equal weight.

1. (a) Consider multivariate polynomials with coeflicients from a commutative ring with iden-
tity, e.g., Z. With reference to representations of such polynomials, explain briefly the
terms recursive, distributive, dense and sparse.

(b) Define Vandermonde’s determinant for n indeterminates x1, xa, . .., x,. Explain, briefly,
its relevance to the problem of testing polynomial expressions (given as sums of prod-
ucts) for equality to zero.

(¢) The following Maple code takes two polynomials f, g with rational coefficients in the
indeterminate x where ¢ is not a constant. If g = f¢ for some natural number e > 0
the code returns e otherwise it returns —1.

[4 marks |

[6 marks |


http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct

power? (f:UP(x,FRAC INT),g:UP(x,FRAC INT)):INT==
m:=totalDegree (f)
n:=totalDegree(g)

if m=0 then -1 --assumes g is not constant
else

r:=divide(n,m)

if r.remainder "= 0 then -1

else

e:=r.quotient
for i in 1..1+n repeat

if eval(f,x=i)"e ~= eval(g,x=i) then return -1
e

Note that totalDegree takes a polynomial (of any type) as argument and returns its
total degree, returning 0 for the zero polynomial. The Axiom function divide(a,b)
takes two integers a, b and returns a record with two components: a quotient part
and a remainder part. Note that “= means # in Axiom.

i. What single line would you add to the start of the code that checks if g is not a
constant and signals an error if it is? [2 marks |

ii. Including the type information as shown makes the function header rather obscure.
Give an alternative way to declare the type information so that the header is left
as power? (f,g)== and the body is left unchanged. [2 marks ]

iii. A user wants to amend the code so that it takes a third polynomial h and tests if
g(h(z))is a power of f(x). He does this by amending the code with k:=eval(g,x=h),
where k is a new local variable. He replaces all other occurrences of g in the code
with k. While this is correct, it is potentially inefficient, e.g., it creates structures
that are bigger than necessary. Explain an alternative simple approach that avoids
the situation and explain why this is so for your approach. [4 marks |

iv. Suppose that f # 0 (to avoid special cases) and let m = deg f, n = degg. Show
that g = f¢ for some e > 0 if and only if
® n=em.
e g(a;) = f(a;)¢, for 1 <i < n+ 1, where the a; can be chosen to be any n + 1
distinct numbers.
Use this to deduce that power? is correct.
[Note: You may assume without proof the fact that a non-zero polynomial of
degree d with coefficients from an integral domain has at most d roots.] [7 marks |

2. In this question we consider non-zero polynomials in one indeterminate z with rational
coefficients. Throughout “root” means a root from the real numbers.

(a) Explain briefly what it means to say that a polynomial f is square free. Give a method
for finding the square free part, denoted by sqfp(f), of f and state the relationship
between the roots of f and the roots of sqfp(f). [4 marks |

(b) Define the Sturm sequence of a square free polynomial f and state how we know when
it stops. How would you use the sequence to

i. Find how many roots f has in the interval (a,b), assuming that f(a) # 0 and
g(b) # 0.
ii. Find exactly how many roots f has. [7 marks |
(¢) Suppose that we want to find the common roots of f and g both square free.

i. Prove that the roots we wish to find are precisely the roots of f2 + g%. Is f? + ¢>
guaranteed to be square free? Justify your answer with a proof or counterexample
as appropriate. [4 marks |



§2.

(d)

ii. The approach of the preceding part has the disadvantage that it always creates a
polynomial of higher degree than that of f and g. Give a method for producing a
single polynomial with precisely the common roots of f and g such that the single
polynomial has degree no higher than that of f and of ¢ and is always square free.
Prove that your method is correct.

Suppose we have infinitely many polynomials f1, fa,... and let I be the ideal of Q[z]
that they generate, i.e., I = (fi, f2,...). Prove that there is a single polynomial h such
that I = (h). How do the roots of h relate to the roots of fi, fo,...7 Justify your
answer.

3. This question is concerned with Grébner bases of ideals of polynomials with coefficients from
a field k.

(a)
(b)

Define what is meant by an admissible order < on power products. Prove that if u, v
are power products and u | v then u < v.
Explain what is meant by a lexicographic order on power products.

Suppose we have such a lexicographic order with x1 > x5 > --- > x,, and p is a non-zero
polynomial whose leading power product is of the form z{ where 1 <4 <n. What can
we say about the other power products (if any) that occur in p?

Let uy, ug,...,u, and 1, s, ..., x, be distinct indeterminates over k and g1, g2, ..., gn €
kluy, ug, ..., u.]. Let
I: (1'1 _gla"'axn_gn)
be the ideal of k[zy,...,%n,u1,...,u,] generated by the polynomials z; — ¢g1,22 —
g2y -+, Ty — gp and set
J=INk[xi,za,...,z,]
i. Prove that J is an ideal of k[z1,x2, ..., ,].

ii. Let G be a Grobner basis of I with respect to a lexicographic order in which every
u; is greater than every x;. Is it correct to say that H = G N k[z1,22,...,2,] is a
Grobner basis for J? Justify your answer.

iii. Assume now that k is infinite and g1, g2, . - . , gn € K[u1, ug, ..., ur]. The polynomials
define the subset S of k™ given by

S={(g1(at,--.,ar),...,gnlar,...,a.)) | a1,...,ar €k}.

The implicitization problem is to find f1, fa,..., fm € k[x1,22,...,2,] such that

S CV(f1,fa,-.., [m)and this is the smallest variety that contains S, i.e., V(f1, fo, ...

W whenever W is a variety such that S C W. Using the notation above, it can be

shown that we can take for f1, fa,..., fm any set of generators of .J].
Describe an algorithm for finding f1, fo, ..., fm (you are not required to prove its
correctness).

Let r=1,n=2and ¢y =u; — 1, go = u; + 1 with £k = Q. Use your algorithm to
show that f; = 21 — x2 + 2 solves the implicitazation problem in this case.

[Note: In the example part you may assume the following fact: if G is a set of
polynomials and hq, ho are polynomials whose leading power products are coprime
then spol(hi, ha) =& 0.]

Operations on Ideals: the Algebra—Geometry Dictionary. Let k& be a field and
X = {x1,292,...,2, } a set of indeterminates over k. We have seen how to associate special
subsets (i.e., varieties) of k™ with ideals of k[X] and vice versa. It is reasonable to ask such
questions as: let Vi, V5 be varieties, are V7 NV, and V; UV, also varieties? Naturally the answers
to such questions are related to an understanding of operations on ideals. We discuss the two
cases cited in detail as preparation for the exercises.

Throughout we let I, J be ideals of k[X].

[6 marks

[4 marks |

[4 marks |

[4 marks |

[3 marks |

[6 marks |

s fm) €

[8 marks |



Definition 2.1 The sum of I and J is given by
I+J={f+glfelgeJ}.
Lemma 2.1 I+ J is an ideal and V(I + J) =V (I)N'V(J).

Proof I+ J is not empty since it contains 0. Now suppose that h € I 4+ J and p € k[X]. Then
h=f+gforsome f € I and g € J. Thus ph =pf+pg € I+ J since pf € I and pg € J (as they
are both ideals). Finally if h1,ho € I 4+ J then hy = f1 + g1 and he = fo + g2 for some f1, fo € [
and g1,g2 € J. Thus hy —ha = (f1 — f2) + (91 — 92) € I + J again because I and J are ideals and
are thus closed under subtraction. This proves that I + J is an ideal.

To prove that V(I+J)=V({I)NV(J)let a € V(I + J). Then a € V(I) since I C I + J and
similarly a € V(J). Thusa € V(I)NV(J). For the reverse inclusion suppose that a € V(I)NV (J).
This means that f(a) =0 for all f € I and g(a) = 0 for all g € J. It follows that (f + g)(a) =0
forall felandgeJ,ie., h(a)=0forall h € I+ J and thus a € V(I + J) as required. a

Definition 2.2 The product of I and J is given by

IJ={fglfelgelJ}).

Note that in this defintion we cannot just define the product as the set of all fg with f € I and
g € J because this is (in general) not closed under sums. The correct definition takes all finite
sums of such products, i.e.,

IJ={figi + fogo+ -+ fmgm | fi€1,9; € J, form >1and 1 <i<m}.

It is worth noting here that we have IJ C I and IJ C J (can you see why?). We will return to
this below.

Lemma 2.2 1J is an ideal and V(IJ) =V (I)UV(J).

Proof 1J is not empty since it contains 0. Suppose that h € IJ and p € k[X]. Then h = fi1g1 +
f2g2+- -+ fmgm for some f1, fo,..., fn € L and g1, 92, ...,9m € J. Thus ph = (pf1)g1+(pf2)g2+
< 4+ (pfm)gm € IJ since T is an ideal and thus closed under multiplication by elements of k[X].

Finally if hy, ho € IJ then hy = fi1g11+ fi2g12+- -+ firg1r and ho = fo1g01+ fa2g22 +- - -+ fasg2s
for some f;; € I and g;; € J. Thus

hi —ha = fiign + fizgiz + - - + firgir + (= f21)g21 + (= f22)g22 + - - - + (— f2s) 925
e lJ,

since I is closed under negation.

To prove that V(IJ) = V(I)UV(J) let a € V(IJ). Then f(a)g(a) =0forall f € Tand g € J.
If f(a) =0forall f € I then a € V(I). Otherwise there is some f € I such that f(a) # 0 in which
case g(a) =0 for all g € J (since f(a),g(a) € k, a field) and so a € V(J). Thus a € V(I) UV (J).
For the reverse inclusion let ¢ € V(I) U V(J) and suppose w.l.o.g. that a € V(I). Then f(a) =0
for all f € I and it follows that h(a) = 0 for all h € I.J (since h is a finite sum of products of
members of I and J). It follows that a € V(I.J). O

An obvious and important question to ask in connection with these constructions is how to
find a basis for the constructed ideal given bases for I and J. This turns out to be easy for these
cases.

Lemma 2.3 Let f1, fo,..., fr be a basis for I and g1,9s,-..,9s a basis for J. Then

1. f1, foy-- s fry91,92,---,9s s a basis for I + J.

2. figj for1<i<rand1<j<s isa basis for 1.J.



Proof For the basis of I + J let H = (f1,..., fr,91,---,9s). Cleary H contains both I and J as
subsets and thus I + J C H since H is closed under addition. The reverse inclusion is obvious
since the generators of H are contained in I + J.

For the basis of I.J it is clear that the ideal H = (figj, 1<i<rl<j<s)is contained
in IJ. For the reverse inclusion it suffices to show that any product fg with f € I and g € J
isin H. We have f = >\ p;fi and g = Z‘;:l g;9; for some polynomials p;, ¢;. Thus fg =
> ie1 2_j—1Pigjfigj and this is in H as required. O

The two examples given above are relatively straightforward and the question of finding bases
is easily settled. We now move to look at a rather more intricate case.

§2.1. Intersection of Ideals. Since ideals are (special kinds of) sets we can take their intersec-
tion.

Exercise 2.1 Prove that I NJ is an ideal.

Note that we always have IJ C I N J because IJ C I and IJ C J as observed above. However
equality need not hold as can be seen by taking I = J = (x) in k[z]: we have IJ = (2?) but
INJ = (z) and (2?) C (x) since 2% € (x) but = ¢ (2?) [why?].

Exercise 2.2 Prove that V(IN.J)=V(I)UV(J).

Thus V(I.J) and V(I N.J) are the same. We will see that finding a basis for I N .J from bases of T
and J is quite hard. So why bother with this harder concept? The simple example given above
(with I = J = (x)) provides a clue. Although IJ and I N J have the same common zeros as sets
the latter gives more refined information. In our simple example the variety is just {0 } but I.J has
this as a repeated root whereas I NJ captures it as a simple root. Recall that if k is algebraically
closed, Hilbet’s Nullstellensatz tells us that f € IV(I) if and only if f° € I for some s > 1. The
radical of I, denoted by /T, is defined to be all f € k[X] such that f* € I for some s > 1; this
is an ideal (the proof is not hard). The Nullstellensatz can now be restated as vI = IV(I). It
is thus reasonable to look for constructions that behave well in terms of taking radicals. I N J is
very well behaved in this regard whereas I.J is not (we always have vVINJ = VINyJ but we
need not have v/IJ = v/I\/J as the simple example shows).

We now discuss the question of finding a basis for I N J. Let ¢ be a new indeterminate over k.
We will be considering elements of k[t], k[X] and of k[X,¢]. In order to keep things clear we will
use the argument based notation u(t), g(X) and h(X,t) for the three types of elements (note
that h(X,t) need not involve ¢ or even members of X, the notation just indicates the possible
indeterminates that it might involve). For u(t) € k[t] we will use u(¢)I to denote the ideal of
k[X,t] generated by {u(t)h | h € I} (remember that I is an ideal of k[X]). The following result is
fairly straightforward to prove, we omit the proof just to save a little space.

Lemma 2.4 Suppose that I is generated by f1(X), f2(X),..., [r(X) as an ideal of k[X].
1. The ideal u(t)I of k[X,t] is generated by u(t) f1(X), u(t) f2(X), ..., u(t) fr(X).
2. If h(X,t) € u(t)I and a € k then h(X,a) € 1.

The two simple observations of the preceding lemma are very helpful in the following.

Exercise 2.3 Prove that INJ = (tI 4+ (1 —t)J) Nk[X]. (Hint: Use the preceding Lemma as part
of your proof.)

Having established the main result we can dispense with the clumsy argument based notation for
elements. Suppose that I is generated by fi, fo,..., fr and J by g1, g2, ..., gs (as ideals of k[X]).
Then the ideal tI 4+ (1 — t)J of k[X,t] is generated by tf1,...,tfr, (1 —t)g1,...,(1 — t)gs, this
follows from Lemma 2.4 and Lemma 2.3. We are now ready to produce an algorithm for finding
a basis for I N J.

[5 marks |

[5 marks |

[10 marks |



Choose a lexicographic order with ¢ greater than xq,xs,...,z, (these can be ordered in any
way). Compute a Grébner basis G for tI + (1 — ¢)I using this order. The elements of G that do
not involve ¢ are a basis (actually a Grébner basis) for I N J. To see this let H be the elements
of G chosen as described (i.e., H = G N k[X]), it follows from the exercise that H C I N J.
Since G is a Grobner basis for t1+ (1 —t)J and INJ C tI+ (1 —t)J it follows that every element
f € 1nJ reduces to 0 w.r.t. G. Of course the power products of any such f are all free of t. On
the other hand if we consider an element of G that involves ¢ then its leading power product will
also involve ¢ (because the order is lexicographic and ¢ is the largest indeterminate). Thus no such
element can ever be used in reducing f to 0, i.e., f reduces to 0 w.r.t. H. Thus H is a Grébner
basis for 7N J and it is a simple exercise (which you are advised to do) to see that a Grébner basis
for an ideal is a basis for it (i.e., it generates the ideal).

As a simple example consider I = (z3y) and J = (zy?); it is easy to see that I N J = (23y?).
We verify this by following the algorithm using Axiom’s function groebner with y <p = <, t.
The basis we obtain is [tz?y, tzy? — 2y?, 2%y?] and so H = [2%y?] as expected.

Note that in Axiom we tell the function groebner which order to use by giving the polynomials
the appropriate type. In our case this is

DistributedMultivariatePolynomial ([t,x,y],Integer)

which, mercifully, can be abbreviated to DMP([t,x,y],INT). You can declare the (same) type
of several variables in one go, e.g., (f1,£f2,g1,g2) :DMP([t,x,y],INT). The procedure groebner
takes a list of polynomials as its argument so the type of this must be List (DMP([t,y,x],INT)).
You can ensure this type in various ways but do check the type before calling the procedure,
probably the safest thing is to assign the list to a variable and look at the type that Axiom returns
(for a single variable B you can just use B: (type) : =(value)).

Exercise 2.4 We use polynomials with coefficients from Q throughout.

1. Let I = (2> +y?> — 1,2y) and J = (y — 2,0y — 1). Find a basis for I N J. Note that V(I)
consists of four points and V(J) consists of two points (use the Aziom function solve).
Find these points and check that the variety of your computed basis is the union of the points
(this does not prove that the basis is correct but it does provide a reasonable check). For your
answer just write down the basis.

2. Let I = (z), J1 = (22,y) and Jo = (22, 2y,%?). Find I N Jy and show that this is the same
as INJy. Since the three ideals are all generated by power products you should be able to see
easily that the generators for the interestion belong to all the ideals (why?). For your answer
just write down the common basis of the two intersections.

Notes. If you have computed a basis G with the extra indeterminate t you can pick out the
polynomials that do not involve t with the simple function

freeOf (t,L)==
R:=[]
for f in L repeat if not member?(t,variables(f)) then R:=cons(f,R)
R

You could try other examples, especially ones for which you can describe the varieties easily. An
obvious source is to take linear polynomials with finitely many solutions (one set to generate I
and another to generate J). Naturally the algorithm works in general but things get complicated:
even here you can do some checking, e.g., the generators for I N.J should be in I and in J and this
can be checked using Grobner bases for I and J. In Axiom you can do this using the procedure
normalForm, if G is the Grobner basis then the normal form of f is obtained by normalForm(f,G).

Kyriakos Kalorkoti, March 2019

[5 marks |



