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Sequential data

Sequences

Many data types are ordered, i.e. you can naturally say what
is before and what is after

Chief example, data with a time series structure

Other key biological example, sequences (order given by
polarity of the molecules)

Any other examples right in front of your eyes?
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Sequential data

Latent variables in sequential data

@ Sometimes what we observe is not what we are interested in

@ For example, in a medical application, one could think of a
person being either healthy (H), diseased (D) or recovering
(R)

e What we measure are (related) quantities such as the
temperature, blood pressure, O, concentration in blood, ...

@ The job of the doctor is to infer the latent state from the
measurements
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Sequential data

Latent variables in sequential data

@ In a transcriptomic experiment, we can measure mRNA
abundance at different time points after a stimulus

@ What we may be really interested in is the concentration of
active transcription factor proteins, which may give a more
direct insight in how the cells respond to the stimulus

@ Again, we are interested in reconstructing a latent variable
from observations; this time the latent variables are
continuous (concentrations)
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Sequential data

Network representation of latent variables

o(t+1)

@ We represent the latent states as a sequence of random
variables; each of them depends only on the previous one

@ The observations depend only on the corresponding state

Guido Sanguinetti Bioinformatics 2 - Lecture 4



Inference: the forward-backward algorithm

States and parameters

@ We are interested in the posterior distribution of the states
x1.7 given the observations y;.7 (subscript 1: T denotes the
collection of variables from 1 to T)

@ Notice that we only have one observation per time point

@ In the independent observations case, this would not be
enough

@ We also have parameters which we assume known: these are
in the known probabilities

m=p(x(1)  Tee-1)x) = P(X(t)[x(t = 1))  Oxy = p(y(t)Ix(t)

@ We assume parameters to be time-independent
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Inference: the forward-backward algorithm

The single time marginals

@ The joint posterior over the states is, by the rules of
probability, proportional to the joint probability of
observations and states

p(Xl:T|y1:T) X p(Xl:T’ylzT)

@ An object of central importance is the single time marginal for
the latent variable at time t

@ This is obtained by marginalising the latent variables at all
other time points; by the proportionality above

p(X(t)|y1:T) X P(X(t)7Y1;T)
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Inference: the forward-backward algorithm

Networks and factorisations

@ By using the product rule of probability, we can rewrite the
joint probability of states and observations as

P(X1:T,Y1:T) =
=p (Yt+1:T|X1:T7}/1:t) p (XlzTaY1:t)

(1)

@ Recall that networks encode conditional independence
relations; in particular, areas of the network which are not
directly connected are independent of each other given the
nodes in between.
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Inference: the forward-backward algorithm

Some conditional independencies

@ By inspection of the network representation of the model
(slide 4), we see that

p(Vev1:7Ix17, y1:t) = P (Verr:TIXe41:7) (2)
@ Also x;11.7 are conditionally independent of y;.; given x¢, so
that
1% (Xl:T7 y1:t) =p (Xt+1:T‘X1:t7 y1:t) P (Xl:ta yl:t) = (3)

1% (Xt—&-l:T’Xt) 1% (Xl:h yl:t)
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Inference: the forward-backward algorithm

Factorisations and messages

e Putting equations (2,3) into (1), we get

p(xt7,y1.7) = P (Vetr1: 7y Xer1:7[Xe) P (X128, Y1:1)

o Marginalising x3.;—1 and x;11.7 we get the following
fundamental factorisation of the single time marginal

p(x(B)lyi) o alx()A(1)) = »
= p(x(t)ly1:t) p (Yerr:TIx(t))

@ The single time marginal at time t is the product of the
posterior estimate given all the data up to that point, times
the likelihood of future observations given the state at t
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Inference: the forward-backward algorithm

Aside for Informaticians and like minded people

@ The factorisation in equation (4) is an example of message
passing

@ a(x(t)) is a message propagated forwards from the previous
observations (forward message or filtered process)

@ [(x(t)) is a message propagated backwards from future
observations (backward message)

@ Message passing algorithms allow exact inference in tree
structured graphical models (why?) and approximate
inference in more complicated models
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Inference: the forward-backward algorithm

Filtering: computing the forward message

@ Initialisation:

(1) o< p(y(1),x(1)) = mOx(1) y(1)

@ Recursion:

a(t) ocp (x(t),y1:e) = Y p(x(2),x(t = 1), y1:¢) =

x(t—1)
= 3 p()Ix() p(x(D)Ix(t — 1)) p (x(t — Dlyre—1) =
x(t-1)
= > O Tee-nyx(oy(x(t — 1))
x(t—1)

where | used the conditional independences of the network to
go from line 1 to 2
e If x(t) is a continuous, replace the sum with an integral
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Inference: the forward-backward algorithm

Computing the backward message

e Initialisation: B(x(T)) =1 (why?)

@ Backward recursion:

Blx(t — 1)) = p(yerx(t — 1)) Zp Ve, x(&)|x(t— 1)) =
- Z P Yer1TIy(), x(£),x(t - 1)) p(y(r)x(r>rx(r ~1)=
= Zﬁ (£) x(8)) p (x(8)|x(t 1))

@ Once again, if x is continuous replace sum with integral
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Transcription factors: linear dynamical systems

Biological problem

@ In some organisms, some of the wiring of the network is known
@ Simplest possible model, log-linear model of gene expression

gi(t) = Z Sin,'j TFJ(t) + €
J
where X is a binary matrix encoding the network and
€ ~ N(0,0?) is an error term
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Transcription factors: linear dynamical systems

Inference in the model of transcriptional regulation

@ The simple model of regulation states that gene expression
levels are a weighted linear combination of TF levels

@ Usually, we do not know the TF (protein) levels, so we treat
this as a latent variable problem

@ To incorporate dynamics, we assume the TF levels at time t
to depend on the levels at time t — 1, and gene expression
measurements to be conditionally independent given TF levels

@ Both TF and gene expression levels are assumed to be
Gaussian; Linear Dynamical System (LDS)
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Transcription factors: linear dynamical systems

LDS priors and jargon

@ The time evolution of the hidden states is given by a Gaussian
random walk

x(t+1) = Ax(t) + w(t) — p(x(t + 1)|x(t)) = N (x(t), )

@ The term w ~ N(0,X,,) is they system noise term; the
matrix A is sometimes called the gain matrix.

@ Observations are related to states using another linear
Gaussian model

y(t) = Bx(t) + €(t) = p (y(t)[x(t)) = N (Bx(1),xc)  (6)

where € ~ N(0, X,) is the observation noise and B is the
observation matrix
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Transcription factors: linear dynamical systems

Inference for LDS

@ Since both noises are Gaussian and all equations are linear, all
the messages will be Gaussian

@ This simplifies the inference as we do not need to compute
normalisation constants

@ For example, the forward message is computed as
a(x(t)) =N (x(t)|pe, Te) =
/dX(t = Doax(t = 1))V (x(t)[Ax(t — 1), Zw) N (y(£)|Bx(t), Xe)

@ Exercise: calculate the forward message
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HMM: applications to genomics and functional genomics

Biological motivations

@ In many cases, we observe intrinsically discrete variables (e.g.
DNA bases)

@ Also, we are interested in intrinsically discrete latent states
(e.g. is this fragment of DNA a gene or not?)

@ These situations often arise when dealing with problems in
genomics and functional genomics

o We will give three examples, and show some details on how to
deal with one of these
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HMM: applications to genomics and functional genomics

How to find genes

@ The outcome of a sequencing experiment is the sequence of a
region of the genome

@ Which parts of the sequence gets transcribed into mRNA?
@ Possible solution: sequence the mRNA (laborious)

@ Alternatively, use the codon effect: genic DNA is not
uniformly distributed since triplets of basis code for specific
amino-acids

@ Thus, the sequence of a gene will look different from the
sequence of a not gene region
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HMM: applications to genomics and functional genomics

CpG islands

@ In the genome, a G nucleotide preceded by a C nucleotide is
rare (strong tendency to be methylated and mutate into T)

@ In some regions related to promoters of genes, methylation is
inhibited so many more C followed by G (CpG)

@ These functional regions are called CpG islands and they are
characterized by a different nucleotide distribution
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HMM: applications to genomics and functional genomics

ChIP-on-chip data

@ Technology to measure binding of transcription factors to
DNA

@ Observe an intensity signal (optical)

@ Want to infer whether a certain intensity associated with a
certain fragment of DNA implies binding or not

@ More in lan Simpson's guest lecture
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HMM: applications to genomics and functional genomics

Hidden Markov Models jargon

@ When the latent states can only assume a finite number of
discrete values, we have a Hidden Markov Model (HMMs)

@ HMMs have a long history in speech recognition and signal
processing and they have their own terminology

@ The conditional probabilities p (x(t + 1)|x(t)) are called
transition probabilities. They are collected in a matrix

Ty = p(x(t+1) = i|x(t) = Jj)

@ The conditional probabilities p (y(t)|x(t)) are called emission
probabilities. If the observed variables are also discrete, we
can collect the emission probabilities in another matrix

Oj = p(y(t) = ilx(t) =J)
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HMM: applications to genomics and functional genomics

Inference in HMM

@ The forward and backward messages are simply computed as
matrix multiplications involving emission and transition
matrices

@ The forward message is

Z Ox(t).y(t) Tx(t—1) x(r)(x(t — 1))

x(t—1)

@ The backward message is

Bt —1) = Bx(t)p (y(1)Ix(8)) p (x(t)Ix(t — 1))

x(t)
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HMM: applications to genomics and functional genomics

HMM for CpG islands

@ We construct latent variables with eight states representing
bases in normal DNA and CpG regions, (A,C,G,T,A,C,G,T)

@ The 8 x 8 transition matrix will have very low entry for T¢ g
and higher entry for Tz &

@ The emission matrix is just Ox x = 1 = O, 5 with all other
entries zero, indicating that the observation is just the
nucleotide without the CpG/ normal label

@ The specific entries in the transition matrix will be determined
from annotated databases
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