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Networks

A graph or network is a pair (V ,E )

V is a set of nodes or vertices, E is a set of edges or links
connecting the nodes

If the edges are associated with a direction, we have a
directed network

If the nodes can be partitioned in two sets A and B, and all
edges are between A and B, we have a bipartite network
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Example networks

Three networks: undirected (left), directed (centre), bipartite
(right).
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What are networks good for?

Networks are a convenient model for collection of interacting
objects

Objects correspond to network nodes, and two objects are
linked when they interact

Network statistics may contain insights on fundamental
properties of the system

Network structure can help predict the behaviour of the
system

Networks make sense only when interactions are sparse
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Protein-Protein Interaction (PPI) Networks

Many cellular functions are carried out by complexes of
proteins

Two proteins are linked if they form a complex

This construction yields a large undirected network
(interactome)

Important: the network is a model, it does not exist. Two
proteins being linked does not necessarily mean they will
always interact (why?)
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Example PPI network

The human interactome.
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Signalling networks

Many proteins exist in different states: e.g. dimer/ monomer,
phosphorylated, nitrosylated...

The change of state is often achieved through the action of
another protein: e.g. kinases phosphorylate other proteins

This produces a sequence of modification events that carry
information from a receptor to the nucleus (signalling)

If protein A modifies protein B we draw a directed edge from
A to B

This yields a signalling network, typically a small-ish directed
network
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Example Signalling network

The MAPK pathway.
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Transcription networks

mRNA transcription is modulated by transcription factor
proteins (TFs)

Each TF binds specifically to a number of target genes

We build a directed network by linking each TF with its
targets; this yields a bipartite network

Some target genes do themselves code for TFs; this makes a
transcription networt a normal directed network (not bipartite)
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Metabolic networks

Metabolism consists of a huge number of chemical reactions:
virtually none of these happens in the absence of catalysts
(enzymes)

Metabolite-centric view (dominant): metabolites are nodes; A
and B are linked together if A is a substrate and B is a
product of a reaction

Enzyme-centric view: enzymes are nodes, they are linked
together if the products of the reaction catalyzed by A are the
substrates for B

Both constructions yield an undirected network (except for
irreversible reactions)
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Network jargon

The number of nodes (edges) is denoted by card(V )
(card(E ))

The (average) connectivity is the number of edges divided by
number of nodes

λ =
card(E )

card(V )

The connectivity ranges from ∼ card(V ) (fully connected) to
0 (fully disconnected) (what’s the exact maximum
connectivity?)

The degree d(v) of a node v is the number of edges attached
to it (in directed networks, you have in-degree and out-degree,
sometimes called fan-in and fan-out)
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Global properties

The degree distribution of a network is the empirical
distribution of degrees across nodes, i.e.

p(d) =
1

card(V )
#{v ∈ V : d(v) = d}.

It summarises global properties of the network

If the degree distribution is a power law, p(d) ∝ d−γ we have
a scale-free network (also called small world)

Scale free networks have many hubs and have the property
that the path between any two nodes is short. They have been
proposed as good models of metabolism (skepticism now).
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Random networks and network motifs

When faced with a large network like E. coli’s transcription
regulatory network, we would like to see if there are some
subnetworks which are particularly frequent

These subnetworks are called network motifs and may have
some specific biological function

In order to assess whether something is over-represented, we
need to have a control experiment

The control is given by a random network

We will see a simple algorithm for generating random networks
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Erdös-Renyi random networks

Generative algorithm for random networks with fixed average
connectivity dating from the ’50s

For each ordered pair of nodes xi , xj , generate a random
number z ∈ [0, 1] from the uniform distribution

Note, xi and xj can be the same node, i.e. we allow
self-regulation

If

z <
λ

card(V )

place a directed edge between xi and xj

Repeat through all nodes

The result is a random network with (approximately) average
connectivity λ
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Comparing random and real networks

We are interested in how many times a specific type of
subnetwork we may find in a network of size card(V ) = N

Exercise, how many times do we find autoregulation in a
random network?

Each xi can regulate itself with probability

p =
λ

N

On average, we would expect Np self-regulating nodes
(assuming independence) with a standard deviation of

√
Np

For E.coli, this is 1.1 and 1.2

There are 40 self regulating nodes in E.coli
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Significant motifs

We have shown that autoregulation is a significant network
motif

Other important motifs are made of three nodes, feed-forward
loops

These have the property of acting as filters for transient
signals

Also important are single-input motifs (one TF regulating
many genes) and dense overlapping regulons (group of genes
sharing a small number of regulators
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Network motifs

SIM DOR FFL

Guido Sanguinetti Bioinformatics 2 - Lecture 3



Biological networks
Network statistics: edges

Reverse engineering of networks

Nodes measurements

We frequently can measure the quantities associated with the
nodes, e.g. expression levels of genes

Network structure encodes interactions

Statistically, interactions are modelled as dependencies among
variables

Networks of random variables are usually called graphical
models

We will first introduce a cheap and cheerful way of
constructing networks

We will explore the case of Gaussian graphical models
(GGMs), networks of Gaussian variables
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Correlation networks

We are faced with a high-dimensional data set with few
observations (e.g. microarrays) with no specific hypotheses or
background knowledge

In these cases, one only needs a fast, scalable algorithm and
can compromise on accuracy

Efficiency is a pre-requisite; in practice for transcriptomics this
means O(n2) where n is the number of genes

Intuitively, we will connect every pair of nodes that pass a
certain similarity threshold

The results can then be used for data visualisation and
exploration/ hypothesis generation

Guido Sanguinetti Bioinformatics 2 - Lecture 3



Biological networks
Network statistics: edges

Reverse engineering of networks

Pearson correlation

A frequently used measure of similarity is Pearsons correlation

The Pearson correlation coefficient between two vectors x and
y is given by

r =
(x− µx) · (y − µy )

‖x− µx‖‖y − µx‖
where µx is the mean of the vector x

Exercise: in which sense is Pearson correlation a correlation?
(hint: think of the vectors as realisations of a zero mean
random variable)
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Conditionals of multivariate Gaussians

Let x1, . . . , xN be jointly zero-mean Gaussian, and denote
C = Σ−1 the inverse of the covariance matrix

The conditional distribution for xi given all the other variables
is again Gaussian with variance C−1

ii and mean

µ = −C−1
ii

∑
j 6=i

Cijxj .

Proof done on the board or as exercise (write xi = N (µ, σ2)
and compare this pdf with the pdf of the joint)
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Conditional independence

Two variables xi and xj are conditionally independent given xk

if
P (xi |xj , xk) = P (xi |xk) .

If x1, . . . , xN are jointly Gaussian, then xi and xj are
conditionally independent given all the others if and only if
Cij = 0

Important remark: in a multivariate Gaussian (and only in a
Gaussian), the covariance matrix encodes the dependence
(correlation) between the variables, while the inverse
covariance encodes the conditional dependencies
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Networks and Inverse covariances

We can encode a network by exploiting conditional
independence

We declare that two variables xi and xj are conditionally
independent given all the others if and only if they are not
directly linked in the network

The network structure is therefore encoded in the pattern of
zeros of the inverse covariance matrix

Inferring the network in the Gaussian case is the same as
learning the (inverse) covariance

Exercise: what is the pattern of zeros in the inverse covariance
of the undirected graph in slide 3?
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Cytoscape: next week

At a more basic level, one may want to visualise on the
network the expression patterns found in an experiment

The dominant tool is Cytoscape
http://www.cytoscape.org/, a widely used open-source
tool

Does not model the data, only offers visualisation

Large number of plug-ins which allow for basic data mining
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