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Problem formulation

Often in biology we have samples of a certain quantity from
two conditions

E.g., we have measurements of a protein expression x in two
cohorts (treated and control)

We want to know whether the di?erences observed between
the two populations are statistically signicant, so x may be
used as a biomarker

How can we do that since we know nothing of the distribution
of x?
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Terminology

We start by assuming the null hypothesis: the two sets of
samples have the same distribution

The procedure to asses whether it holds is called hypothesis
testing

The samples in each set are assumed to be independent and
identically distributed (no cousins in the set please!)

The test is unpaired if the samples in the two sets are
independent (e.g. different people form the two sets)

The test is paired if the samples are dependent in the two sets
(e.g. same people before/ after treatment, different
algorithms on same data sets)

The testing consists in computing a test statistic from the
sample whose distribution is approximately known
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Power and errors

An important concept is the power of a statistical test, i.e. its
ability to flag up (correctly)a deviation from the null
hypothesis

Conversely, it is important to define the type of errors one can
make

A type I error means incorrectly rejecting the null hypothesis
(false positive, crying wolf)

A type II error means being too conservative, i.e. accepting a
wrong null hypothesis. It is the complement of the power: if β
is the rate of type II errors, the power of the test is
mathematically defined as 1− β
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The t-test

Under the assumption of normality (which can be checked
using e.g. a Kolmogorov-Smirnov test), one uses Student’s
t-test

The unpaired test statistic (assuming equal sample size and
variance) is given by

t =
〈x〉1 − 〈x〉2√

var1+var2
n

where the subscript indicates empirical expectations taken in
the two sets and n is the sample size

t follows a Student t distribution with n − 1 degrees of
freedom
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The p-value

One can then look up the probability of getting a value of t
greater than the empirical one from the samples

This is the p-value: the probability that the experiment would
return a result at least as extreme under the null hypothesis

Depending on the application, p-values of 0.05 or 0.01 are
considered significant

Notice that t grows as
√

n so increasing n we get more and
more statistically signicant results→ experimental design!
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Multiple hypothesis testing

Suppose instead of measuring a biomarker across two samples,
you’ve done a high-throughput experiment, i.e. measured 20K
genes’ expression

You want to use all this data to check whether the two
conditions are different

What do you do? Do you do independent tests for each gene
and see whether any are differentially expressed? What’s the
obvious problem?

This is an example of multiple hypothesis testing. A classic
approach is to correct (e.g. Bonferroni correction, however
this is very conservative)
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Non-parametric testing

The t test makes a parametric assumption, i.e. normality.
What if it doesn’t hold?

A popular non-parametric test is the Wilcoxon rank-sum test
(or Mann-Whitney test), which tests whether one sample is
larger than the other

The idea is that, if two samples are statistically the same, the
ranking should come from a uniform distribution over the
group of permutations

The Wilcoxon rank-sum test has almost the same power as
the t test under the normal assumption (∼ 0.98)

If the normal assumption is violated, the Wilcoxon rank-sum
test can be several times more powerful and is more robust to
outliers
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Wilcoxon rank-sum test: algorithm

Pool the data and rank them in ascending order

Compute the rank-sum for the samples (sum the ranks), R1

and R2

The U-statistic is obtained as

Ui = Ri −
ni (ni − 1)

2

Tables contain critical values of U by sample sizes: Ui either
bigger or smaller than Ucrit indicates significance (careful
which way it goes)
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Testing summary

Statistical procedure to determine whether observed
differences in samples are what is to be expected from random
fluctuations

Essential to determine the type of test (paired/ independent)

For large data sets or for normally distributed samples (e.g.
following a K-S test), one uses a t-test

For smaller data-sets far from normality a non-parametric test
such as Wilcoxon’s rank-sum is probably better)
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Examples

I’ll use R, a powerful statistical language, to work through
these examples, but this is not essential

You can get R from www.rproject.org, if you become a
bioinformatician it will be your main language

I’ll demonstrate some testing (with tables) on some simulated
data sets

The source for tables is the web
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Problem statement

Data in biology often very high dimensional with very few
samples

E.g., in a cancer study, we could have 40 subjects and 10000
features (genes) each

Find a suitable 2D projection of the data that highlights
structure

Determine the projection (not necessarily 2D) that identies
the most relevant features

In general, we seek to find the optimal projection from D
(original) dimensions to Q (target) dimensions, based on a
sample of N points
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Principal Component Analysis

A plausible assumption is that the interesting directions are
the ones with the greatest variation

The empirical covariance of a data set xi with mean µ̂ is

Σ̂ =
1

N

∑
i

(xi − µ̂) (xi − µ̂)T

The directions that maximise the projected variance satisfy

ΣV = ΛV

with Λ a diagonal matrix containing the Q largest eigenvalues
of the empirical covariance
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Least-squares fit of a subspace

An equivalent way of looking at the problem is to find the
(hyper)-plane which best interpolates the data (why?)

So, we need to find D-dimensional vectors vj (j = 1, . . . ,Q)

and scalars t j
i (i = 1, . . . ,N) such that the error function

E =
N∑

i=1

‖xi −
Q∑

j=1

vj t
j
i ‖

2

is minimised

We can rewrite the error function using the formula for the
residual of the projection of a point onto a hyperplane

E =
N∑

i=1

‖xi −
Q∑

j=1

vjvj · xi‖2

Show that this yields the same formula as in the previous slide
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Factor Analysis

What we have just shown is that PCA is a special case of
matrix factorisation, where the data matrix X (D × N) is
decomposed as the product of V (D × Q) and projected
latent points T (Q × N)

This suggests a probabilistic model for Probabilistic PCA
(Tipping and Bishop 1998)

x = V t + ε ε ∼ N (0, σ2I ), t ∼ N (0, I )

More generally, by relaxing the spherical covariance
requirement on t to a diagonal, we obtain Factor Analysis
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Proofs and examples

Let’s demonstrate the meaning of PCA on some examples,
again using R

What do principal components tell us?

What do the factors tell us?

If we have time, let’s prove some formulae of the above
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Next week

Next week we’ll start thinking about networks and how to
reconstruct them

We’ll see efficient methods for building networks based on
correlations

We will also introduce the important concept of conditional
independence and a (slightly) more sophisticated way of
reconstructing networks

Early in the morning we will have a tutorial on probability
review and hypothesis testing
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