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Definitions

Random variables: results of non exactly reproducible
experiments

Either intrinsically random (e.g. quantum mechanics) or the
system is incompletely known, cannot be controlled precisely

The probability pi of an experiment taking a certain value i is
the frequency with which that value is taken in the limit of
innite experimental trials

Alternatively, we can take probability to be our belief that a
certain value will be taken
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More definitions

Let x be a random variable, the set of possible values of x is
the sample space Ω

Let x and y be two random variables, p(x = i , y = j) is the
joint probability of x taking value i and y taking value j (with
i and j in the respective sample spaces. Often just written
p(x , y) to indicate the function (as opposed to its evaluation
over the outcomes i and j)

p(x |y) is the conditional probability, i.e. the probability of x if
you know y has a certain value
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Rules

Normalisation: the sum of the probabilities of all possible
experimental outcomes must be 1,

∑
x∈Ω p(x) = 1

Sum rule: the marginal probability p(x) is given by summing
the joint p(x , y) over all possible values of y ,

p(x) =
∑
y∈Ω

p(x , y)

Product rule: the joint is the product of the conditional and
the marginal, p(x , y) = p(x |y)p(y)

Bayes rule: the posterior is the ratio of the joint and the
marginal

p(y |x) =
p(x |y)p(y)

p(x)

Problem! Computing the marginal is often computationally
intensive
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Distributions and expectations

A probability distribution is a rule associating a number
0 ≤ p(x) ≤ 1 to each state x ∈ Ω, such that

∑
x∈Ω p(x) = 1

For finite state space can be given by a table, in general is
given by a functional form

Probability distributions (over numerical objects) are useful to
compute expectations of functions

〈f 〉 =
∑
x∈Ω

f (x)p(x)

Important expectations are the mean 〈x〉 and variance
var(x) = 〈(x − 〈x〉)2〉. For more variables, also the covariance
cov(x , y) = 〈(x − 〈x〉)(y − 〈y〉)〉 or its scaled relative the
correlation corr(x , y) = cov(x , y)/

√
var(x)var(y)
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Computing expectations

If you know analytically the probability distribution and can
compute the sums (integrals), no problem

If you know the distribution but cannot compute the sums
(integrals), enter the magical realm of approximate inference
(fun but out of scope)

If you know nothing bur have NS samples, then use a sample
approximation

Approximate the probability of an outcome with the frequency
in the sample

〈f (x)〉 '
∑
x

nx

NS
f (x) =

1

NS

NS∑
i=1

f (xi )

(prove the last equality)
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Independence

Two random variables x and y are independent if their joint
probability factorises in terms of marginals

p(x , y) = p(x)p(y)

Using the product rule, this is equivalent to the conditional
being equal to the marginal

p(x , y) = p(x)p(y)⇔ p(x |y) = p(x)

Exercise: if two variables are independent, then their
correlation is zero. NOT TRUE viceversa (no correlation
does not imply independence)
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Continuous states

If the state space Ω is continuous some of the previous
definitions must be modified

The general case is mathematically difficult; we restrict
ourselves to Ω = Rn and to distributions which admit a
density, a function

p : Ω→ R s.t. p(x) ≥ 0∀x and
∫

Ω
p(x)dx = 1

It can be shown that the rules of probability distributions hold
also for probability densities

Notice that p(x) is NOT the probability of the random
variable being in state x (that is always zero for bounded
densities); probabilities are only defined as integrals over
subsets of Ω
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Basic distributions

Discrete distribution: a random variable can take N distinct
values with probability pi = 1, . . . ,N . Formally

p(x = i) =
∏
j

p
δij

j

δij is the Kronecker delta and the pi s form a vector of
parameters.

Dirichlet distribution: a distribution over vectors of continuous
variables (p1, . . . , pN) s.t.

∑
i pi = 1. Its density is given by

f (p1, . . . , pN |α1, . . . , αN) =
1

Z

∏
i

pαi−1
i

Z is a normalisation constant, αs are parameters
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Basic distributions

Multivariate normal: distribution over vectors x, density

p (x|µ,Σ) =
1√

2π|Σ|
exp

[
−1

2
(x− µ)T Σ−1 (x− µ)

]
How many parameters does a multivariate normal have?

Gamma distribution: distribution over positive real numbers,
density

p (x |k , θ) =
xk − 1 exp(−x/θ)

θkΓ(θ)

with shape parameter k and scale parameter θ
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Parameters?

Many distributions are written as conditional probabilities
given the parameters

Often the values of the parameters are not known

Given observations, we can estimate them; e.g., we pick θ by
maximum likelihood

θ̂ = argmax
[∏

p(x − i |θ)
]

Or one could place a prior distribution over the parameters

Posteriors are computed via Bayes theorem
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Exercise: fitting a discrete distribution

We have independent observations x1, . . . , xN each taking one
of D possible values, giving a likelihood

L =
N∏

i=1

p (xi |p)

Compute the Maximum Likelihood estimate of p. What is the
intuitive meaning of the result? What happens if one of the D
values is not represented in your sample?

Alternatively, place a Dirichlet prior with parameters α over p
and compute the posterior distribution. What is the meaning
of the prior parameters?
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Conjugate priors

The Bayesian way has advantages in that it quantifies
uncertainty and regularizes naturally

BUT computing the normalisation in Bayes theorem is very
hard

The case when it is possible is when the prior and the
posterior are of the same form (conjugate)

Example: discrete and Dirichlet (exercise before)

Exercise: conjugate priors for the univariate normal
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