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Probability review

Basics of probability theory

@ Random variables: results of non exactly reproducible
experiments

e Either intrinsically random (e.g. quantum mechanics) or the
system is incompletely known, cannot be controlled precisely

@ The probability p; of an experiment taking a certain value / is
the frequency with which that value is taken in the limit of
infinite experimental trials

@ Alternatively, we can take probability to be our belief that a
certain value will be taken
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Probability review

@ Normalisation: the sum of the probabilities of all possible
experimental outcomes must be 1, > o p(x) =1

@ Sum rule: the marginal probability p(x) is given by summing
the joint p(x, y) over all possible values of y,
p(x) = 2yeq P(x,y)

@ Product rule: the joint is the product of the conditional and
the marginal, p(x, y) = p(x|y)p(y)

@ Bayes’ rule: the posterior is the ratio of the joint and the

marginal
p(xly)p(y)
pPWYIX)=—""7~5
Uh =00
@ Problem! Computing the marginal is often computationally
intensive
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Probability review

Distributions and expectations

@ A probability distribution is a rule associating a number
0 < p(x) <1 to each state x € 2, such that o p(x) =1

@ For finite state space can be given by a table, in general is
given by a functional form

o Probability distributions (over numerical objects) are useful to
compute expectations of functions

(f)p = p(x)f(x)

x€eQ

@ Important expectations are the mean (x) and variance
var(x) = ((x — (x))?). For more variables, also the covariance
cov(x,y) = {(x — (x)) (v — (y))) and the correlation
corr(x,y) = cov(x,y)/+/var(x)var(y)
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Probability review

Computing expectations

o If you know analytically the probability distribution and can
compute the sums (integrals), no problem

@ If you know the distribution but cannot compute the sums
(integrals), enter the magical realm of approximate inference
(fun but out of scope)

@ If you know nothing bur have Ns samples, then use a sample
approximation

@ Approximate the probability of an outcome with the frequency
in the sample
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Probability review

Independence

@ Two random variables x and y are independent if their joint
probability factorises in terms of marginals

p(x,y) = p(x)p(y)

@ Using the product rule, this is equivalent to the conditional
being equal to the marginal

p(x,y) = p(x)p(y) < p(x|y) = p(x)

@ Using Bayes' theorem, one obtains also

p(xly) = p(x)
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Probability review

Continuous states

@ If the state space Q is continuous the previous definitions
must be modified

@ The general case is mathematically difficult; we restrict
ourselves to 2 = R” and to distributions which admit a
density, a function

p: Q2 —R st. p(x)>0vVx and / p(x)dx =1
Q

@ It can be shown that the rules of probability distributions hold
also for probability densities

e Notice that p(x) is NOT the probability of the random
variable being in state x (that is always zero for bounded
densities); probabilities are only defined as integrals over
subsets of Q
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Some probability distributions and Bayesian things

Basic distributions

@ Discrete distribution: a random variable can take N distinct
values with probability p; i=1...,N. Formally

. 5
p(x=10)=]]p"
j

Notice the p; values can be thought as parameters of the
distribution
@ Dirichlet distribution: a distribution over vectors of continuous
variables (p1,...,pn) s.t. >_; pi = 1. Its density is given by
1 a;—1
f(Plv'--7PN|Oél7---aOZN) = ?Hp,
Z is a normalisation constant which is expressed in terms of
the Beta function.
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Some probability distributions and Bayesian things

Basic distributions

o Multivariate normal: distribution over vectors x, density

(X, 5) = L
p(x|p, X) = ——=exp |5
\/QW‘Z’ 2

Parameters are the mean vector  and covariance matrix -
(symmetric and positive definite)

(x—p) T (x—p)

@ Gamma distribution: distribution over positive real numbers,
density
xk=Lexp (—x/6)
OkT (k)

with shape parameter k and scale parameter 6.

p(x|k, 6) =
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Some probability distributions and Bayesian things

Parameters?

@ Distributions are written as conditional probabilities given the
parameters

@ Often the values of the parameters are not known

@ Given observations, we can estimate them; e.g., we pick 0 by
maximum likelihood

0 = argmax H p(xi|6)

1

@ Or one could place a prior distribution over the parameters

@ Posteriors are computed via Bayes theorem
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Some probability distributions and Bayesian things

Exercise: fitting a discrete distribution

@ We have independent observations xi, ..., xy each taking one
of D possible values, giving a likelihood

N
£ =] p(xlp) = H e
i=1

e Maximum likelihood (bear in mind the constraint . p; = 1)
leads to

pi =

@ Placing a Dirichlet prior over p we obtain a posterior
aj+n(x=j)—
p(p‘xlw"aXNv OCH !

which is again a Dirichlet distribution with pseudocounts o



Some probability distributions and Bayesian things

Conjugate priors

@ The Bayesian way has advantages in that it quantifies
uncertainty and regularizes naturally

@ BUT computing the normalisation in Bayes theorem is very
hard

@ The case when it is possible is when the prior and the
posterior are of the same form (conjugate)

e Example: discrete and Dirichlet (take notes)

@ Exercise: conjugate priors for the univariate normal
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Telling things apart
Visualising data
A bag of tricks Hierarchical clustering

The most basic problem

@ We are given samples of a certain quantity from two
conditions

o E.g., we have measurements of a protein expression x in two
cohorts (treated and control)

@ We want to know whether the differences observed between
the two populations are statistically significant, so x may be
used as a biomarker

@ How can we do that since we know nothing of the distribution
of x?
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Telling things apart
Visualising data
A bag of tricks Hierarchical clustering

t-tests and p-values

@ We know how to tell whether two Gaussian distributed
samples are different

@ Use the paired t-test

~

1— 2
7 (03 +03)

@ The value of t measures how distant the two samples are; it is
distributed according to a Student t distribution with N — 1
degrees of freedom

@ Looking up on a table we can get the p-value, the probability
that a value greater or equal to t would have been obtained at
random
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Telling things apart
Visualising data
A bag of tricks Hierarchical clustering

In practice

@ It may be useful to transform the data in a way that it
becomes approximately Gaussian (e.g. take log of positive
numbers)

@ Tests of Gaussianity exist (e.g. Kolmogorov-Smirnov)

@ One of the main practical uses of testing is for experimental
design, e.g. telling the experimentalist how many more
samples are needed to make mean differences statistically
significant

o Notice that t grows as v/ NN so increasing N we get more and
more statistically significant results
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Telling things apart
Visualising data
A bag of tricks Hierarchical clustering

Problem formulation

@ Data in biology often very high dimensional with very few
samples

e E.g., in a cancer study, we could have ~40 subjects and
10000 features (genes) each

@ Find a suitable 2D projection of the data that highlights
structure

@ The projection also identifies the most relevant features

Guido Sanguinetti Bioinformatics 2 - Lecture 2



Telling things apart
Visualising data
A bag of tricks Hierarchical clustering

Principal Component Analysis

@ A plausible assumption is that the interesting directions are
the ones with the greatest variation

@ The empirical covariance of a data set x; with mean ji is

1
N-1

]

r (x—p) (x— )"

N
=1

@ The directions that maximise the projected variance satisfy
SU =AU

with A a diagonal matrix containing the largest eigenvalues of
the empirical covariance
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Telling things apart
Visualising data
A bag of tricks Hierarchical clustering

An algorithm for PCA

Compute empirical mean as ji = % > Ox;
Compute empirical covariance N
Compute first two eigenvectors uy > of N

Compute projected 2D data set as X = (x; ug,x, up)

PCA was introduced for the analysis of microarray data in
Alter et al, PNAS 97(18) (2000)
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Telling things apart
Visualising data
A bag of tricks Hierarchical clustering

Extensions to PCA

e Linear/ global/ Gaussian structure of PCA potentially
problematic

@ Many extensions proposed in ML

@ Kernel PCA maps data in higher dimensional space through

non-linear map and then applies PCA (Scholkopf et al, Neural
Computation 10(5), 1998)

@ Other methods use local structure, e.g. Locally Linear
Embeddings (Roweis and Saul, Science 290, 2000), Maximum
Variance Unfolding (Weinberger and Saul, CVPR 2004)
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Telli ings apart
Visualising data
A bag of tricks Hierarchical clustering

Problem formulation

@ Given expression data, we want to identify subgroups
@ Lack knowledge of number of groups

@ Need a greedy, agglomerative procedure
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Telli ings apart
Visualising data
A bag of tricks Hierarchical clustering

Pearson’s correlation

@ A frequently used measure of similarity is Pearson’s correlation

e Given two vectors x,y, we view them as two zero-mean
random variables

@ The variance of each vector is its length (as we assume zero
mean),ox = VxTx

@ The correlation coefficient is then

the cosine of the angle between the vectors (see wikipedia
page for a good review)
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Telli ings apart
Visualising data
A bag of tricks Hierarchical clustering

HC algorithm

Compute pairwise Pearson’s correlations
Find highest correlation pair; merge them by computing mean
Compute Pearson’s of new item with other items

Repeat previous steps until only one item left

Guido Sanguinetti Bioinformatics 2 - Lecture 2



Telling things apart
Visualising data
A bag of tricks Hierarchical clustering

Reflections on HC

@ The HC algorithm gives us a tree representation of the data
(dendrogram)

@ We can keep track of the correlation in the branch length
o Complexity of HC?

@ You can cut the tree at a desired level of correlation/ number
of clusters
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Telli ings apart
Visualising data
A bag of tricks Hierarchical clustering

Next lecture

@ Next week’'s lecture is a guest lecture on microarray
technology

@ Next core lecture will be in two weeks' time
@ We will be looking at networks

@ Please look at Shannon et al, Genome Research 13:2498-2504
(2003), available from www.cytoscape.org
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