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Basics of probability theory

Random variables: results of non exactly reproducible
experiments

Either intrinsically random (e.g. quantum mechanics) or the
system is incompletely known, cannot be controlled precisely

The probability pi of an experiment taking a certain value i is
the frequency with which that value is taken in the limit of
infinite experimental trials

Alternatively, we can take probability to be our belief that a
certain value will be taken
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Rules

Normalisation: the sum of the probabilities of all possible
experimental outcomes must be 1,

∑
x∈Ω p(x) = 1

Sum rule: the marginal probability p(x) is given by summing
the joint p(x , y) over all possible values of y ,
p(x) =

∑
y∈Ω p(x , y)

Product rule: the joint is the product of the conditional and
the marginal, p(x , y) = p(x |y)p(y)

Bayes’ rule: the posterior is the ratio of the joint and the
marginal

p (y |x) =
p (x |y) p (y)

p (x)

Problem! Computing the marginal is often computationally
intensive
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Distributions and expectations

A probability distribution is a rule associating a number
0 ≤ p(x) ≤ 1 to each state x ∈ Ω, such that

∑
x∈Ω p(x) = 1

For finite state space can be given by a table, in general is
given by a functional form

Probability distributions (over numerical objects) are useful to
compute expectations of functions

〈f 〉P =
∑
x∈Ω

p(x)f (x)

Important expectations are the mean 〈x〉 and variance
var(x) = 〈(x − 〈x〉)2〉. For more variables, also the covariance
cov(x , y) = 〈(x − 〈x〉) (y − 〈y〉)〉 and the correlation
corr(x , y) = cov(x , y)/

√
var(x)var(y)
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Computing expectations

If you know analytically the probability distribution and can
compute the sums (integrals), no problem

If you know the distribution but cannot compute the sums
(integrals), enter the magical realm of approximate inference
(fun but out of scope)

If you know nothing bur have NS samples, then use a sample
approximation

Approximate the probability of an outcome with the frequency
in the sample

〈f (x)〉 '
∑
x

nx

NS
f (x) =

1

NS

NS∑
i=1

f (xi )
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Independence

Two random variables x and y are independent if their joint
probability factorises in terms of marginals

p(x , y) = p(x)p(y)

Using the product rule, this is equivalent to the conditional
being equal to the marginal

p(x , y) = p(x)p(y)↔ p(x |y) = p(x)

Using Bayes’ theorem, one obtains also

p(x |y) = p(x)
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Continuous states

If the state space Ω is continuous the previous definitions
must be modified

The general case is mathematically difficult; we restrict
ourselves to Ω = Rn and to distributions which admit a
density, a function

p : Ω→ R s.t. p(x) > 0∀x and
∫

Ω
p(x)dx = 1

It can be shown that the rules of probability distributions hold
also for probability densities

Notice that p(x) is NOT the probability of the random
variable being in state x (that is always zero for bounded
densities); probabilities are only defined as integrals over
subsets of Ω
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Basic distributions

Discrete distribution: a random variable can take N distinct
values with probability pi i = 1 . . . ,N. Formally

p(x = i) =
∏
j

p
δij
i .

Notice the pi values can be thought as parameters of the
distribution

Dirichlet distribution: a distribution over vectors of continuous
variables (p1, . . . , pN) s.t.

∑
i pi = 1. Its density is given by

f (p1, . . . , pN |α1, . . . , αN) =
1

Z

∏
pαi−1
i

Z is a normalisation constant which is expressed in terms of
the Beta function.
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Basic distributions

Multivariate normal: distribution over vectors x, density

p(x |µ,Σ) =
1√

2π|Σ|
exp

[
−1

2
(x− µ)T Σ−1 (x− µ)

]
Parameters are the mean vector µ and covariance matrix Σ
(symmetric and positive definite)

Gamma distribution: distribution over positive real numbers,
density

p(x |k , θ) =
xk−1 exp (−x/θ)

θkΓ(k)

with shape parameter k and scale parameter θ.
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Parameters?

Distributions are written as conditional probabilities given the
parameters

Often the values of the parameters are not known

Given observations, we can estimate them; e.g., we pick θ̂ by
maximum likelihood

θ̂ = argmax

[∏
i

p(xi |θ)

]

Or one could place a prior distribution over the parameters

Posteriors are computed via Bayes theorem

Guido Sanguinetti Bioinformatics 2 - Lecture 2



Probability review
Some probability distributions and Bayesian things

A bag of tricks

Exercise: fitting a discrete distribution

We have independent observations x1, . . . , xN each taking one
of D possible values, giving a likelihood

L =
N∏

i=1

p(xi |p) =
D∏

j=1

p
n(x=j)
j

Maximum likelihood (bear in mind the constraint
∑

i pi = 1)
leads to

pj =
n(x = j)

N
Placing a Dirichlet prior over p we obtain a posterior

p(p|x1, . . . , xN ,α) ∝
D∏

j=1

p
αj +n(x=j)−1
j

which is again a Dirichlet distribution with pseudocounts α
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Conjugate priors

The Bayesian way has advantages in that it quantifies
uncertainty and regularizes naturally

BUT computing the normalisation in Bayes theorem is very
hard

The case when it is possible is when the prior and the
posterior are of the same form (conjugate)

Example: discrete and Dirichlet (take notes)

Exercise: conjugate priors for the univariate normal
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Telling things apart
Visualising data
Hierarchical clustering

The most basic problem

We are given samples of a certain quantity from two
conditions

E.g., we have measurements of a protein expression x in two
cohorts (treated and control)

We want to know whether the differences observed between
the two populations are statistically significant, so x may be
used as a biomarker

How can we do that since we know nothing of the distribution
of x?
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t-tests and p-values

We know how to tell whether two Gaussian distributed
samples are different

Use the paired t-test

t =
µ̂1 − µ̂2√

1
N

(
σ2

1 + σ2
2

)
The value of t measures how distant the two samples are; it is
distributed according to a Student t distribution with N − 1
degrees of freedom

Looking up on a table we can get the p-value, the probability
that a value greater or equal to t would have been obtained at
random
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In practice

It may be useful to transform the data in a way that it
becomes approximately Gaussian (e.g. take log of positive
numbers)

Tests of Gaussianity exist (e.g. Kolmogorov-Smirnov)

One of the main practical uses of testing is for experimental
design, e.g. telling the experimentalist how many more
samples are needed to make mean differences statistically
significant

Notice that t grows as
√

N so increasing N we get more and
more statistically significant results
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Problem formulation

Data in biology often very high dimensional with very few
samples

E.g., in a cancer study, we could have ∼40 subjects and
10000 features (genes) each

Find a suitable 2D projection of the data that highlights
structure

The projection also identifies the most relevant features
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Principal Component Analysis

A plausible assumption is that the interesting directions are
the ones with the greatest variation

The empirical covariance of a data set xi with mean µ̂ is

Σ̂ =
1

N − 1

N∑
i=1

(x− µ̂) (x− µ̂)T

The directions that maximise the projected variance satisfy

Σ̂U = ΛU

with Λ a diagonal matrix containing the largest eigenvalues of
the empirical covariance
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An algorithm for PCA

Compute empirical mean as µ̂ = 1
N

∑
xi

Compute empirical covariance Σ̂

Compute first two eigenvectors u1,2 of Σ̂

Compute projected 2D data set as x̂i = (xT
i u1, xT

i u2)

PCA was introduced for the analysis of microarray data in
Alter et al, PNAS 97(18) (2000)
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Extensions to PCA

Linear/ global/ Gaussian structure of PCA potentially
problematic

Many extensions proposed in ML

Kernel PCA maps data in higher dimensional space through
non-linear map and then applies PCA (Scholkopf et al, Neural
Computation 10(5), 1998)

Other methods use local structure, e.g. Locally Linear
Embeddings (Roweis and Saul, Science 290, 2000), Maximum
Variance Unfolding (Weinberger and Saul, CVPR 2004)
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Problem formulation

Given expression data, we want to identify subgroups

Lack knowledge of number of groups

Need a greedy, agglomerative procedure
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Pearson’s correlation

A frequently used measure of similarity is Pearson’s correlation

Given two vectors x, y, we view them as two zero-mean
random variables

The variance of each vector is its length (as we assume zero
mean),σx =

√
xTx

The correlation coefficient is then

r =
xTy

σxσy
= cos(φ)

the cosine of the angle between the vectors (see wikipedia
page for a good review)
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HC algorithm

Compute pairwise Pearson’s correlations

Find highest correlation pair; merge them by computing mean

Compute Pearson’s of new item with other items

Repeat previous steps until only one item left
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Reflections on HC

The HC algorithm gives us a tree representation of the data
(dendrogram)

We can keep track of the correlation in the branch length

Complexity of HC?

You can cut the tree at a desired level of correlation/ number
of clusters
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Next lecture

Next week’s lecture is a guest lecture on microarray
technology

Next core lecture will be in two weeks’ time

We will be looking at networks

Please look at Shannon et al, Genome Research 13:2498-2504
(2003), available from www.cytoscape.org
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