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stat.kaist.ac.kr/Korean/introduction.html



Network statistics

Degree of a node: The number of edges attached to it.

Degree distribution: Distribution of the individual node
degrees for the entire network.

Power law degree distribution: P(k) ~ k

Clustering coefficient: Measure of the average
neighbourhood of a graph. Probability that two nodes that
are connected to a third node are themselves connected.

Network diameter: Mean shortest path between alll
nodes in the network.
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Network motifs
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Network motifs in the transcriptional regulation
network of Escherichia coli

Shai S. Shen-Orr!, Ron Milo?, Shmoolik Mangan! & Uri Alon!+

nature genetics * volume 31 » may 2002
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Can we learn the signalling pathway from data?
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Network reconstruction from postgenomic data

Escherichia coli Measure mRNA Whole-genome Learn model Local network for
MG1655 strains time level at different time-course expression the gene of interest
time points profiles (smoothing and

interpolation)

Inference

algorithm >

Mukesh Bansal'“, Giusy Dela Gatta' and Disgo di Bamarda’*+

Vol 22 no. 7 2006, pages 815-822
dol: 10 10853 Moinbrmaticsbions
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Pacific Symposium on Biocomputing 5:415-426 (2000)

MUTUAL INFORMATION RELEVANCE NETWORKS:
FUNCTIONAL GENOMIC CLUSTERING USING
PAIRWISE ENTROPY MEASUREMENTS

A.J. BUTTE. I. S. KOHANE
Children’s Hospital Informatics Program and
Division of Endocrinology,

300 Longwood Avenite,

Boston, MA 02115, USA



Relevance networks
(Butte and Kohane, 2000)

1. Choose a measure of association A(.,.)
2. Define a threshold value t,

3. For all pairs of domain variables (X,Y)
compute their association A(X,Y)

4. Connect those variables (X,Y) by an
undirected edge whose association

A(X,Y) exceeds the predefined threshold
value t,
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Assoclation scores
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Assoclation scores

LS (@ =)y — )
corr(x,y)
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How to choose the threshold ?

-> Bootstrapping or randomization test



Frequentist statistics, hypothesis testing

Q=—o- {Data} —=H,




Result not significant: no interaction

/L Do not reject Ho:

-

O!



Significant interaction

Reject Ho:

-
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= EXxperiments
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mm:mmj

= EXxperiments

and so on ...



Number of edges with association score greater than 6
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Shortcomings

Pairwise associations do not take
the context of the system
INto consideration

direct common indirect

interaction regulator interaction co-regulation
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Multivariate Gaussian distribution

, 1 1 1 .
N(xip, X) = (27)D/2 |1/ eXp{—i(x - ) 2T (x —#)}

X
X = a H, Yiaa  ab
— E p—
(X") : (#b) (Em Ebb)

Inverse of the co-variance matrix



- 1 -
(Xt — 1) Apa(Xa — 1) — 5 (X = ) Ay (X6 — 1)

the exponent in a general Gaussian distribution can be written

| o 1. -
—5(x=p) BT (x - p) = —oxTETIX + XTI + const

pick out all terms that are second order in x,

1
from which we can immediately conclude that the covariance
p(X,|Xp) is given by

L

Sap = Ay -



Graphical Gaussian Models (GGMSs)
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Tos ... Top T = J covariance
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strong partial Partial correlation, i.e. correlation
correlation m;, conditional on all other domain variables

Corr(X;,. X, X3,...%X,)

Direct interaction
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Graphical Gaussian Models (GGMs)

Tiz oo Mo\ Inverse of the
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strong partial Partial correlation, i.e. correlation

correlation m;, conditional on all other domain variables

Corr(X;,. X, X3,...%X,)

Direct interaction
Q<O

Problem: #observations < #variables

= Covariance matrix is singular
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Summary of the GGM algorithm, part 1

Partial correlations, as opposed to standard correlations, capture
the influence of the whole system. Mathematically, this is the
correlation between two nodes conditional on the rest of the
system.

The partial correlations can be computed from the inverse of the
covariance matrix.

The true covariance matrix is usually unknown - approximated
by the empirical covariance matrix, estimated from the data.

Empirical covariance matrix = over-fitting problem, can be ill-
conditioned or rank-deficient (singular) = inversion impossible.

Regularization: add the identity matrix, weighted by some
constant, to the empirical covariance matrix - matrix non-
singular. Possible problem: bias.



Summary of the GGM algorithm, part 2

Set the trade-off parameter so as to minimize the
expected difference between the (unknown) true
covariance matrix and the estimated matrix.

Statistical decision theory: closed-from expression for
the optimal trade-off parameter (Ledoit-Wolf lemma).

Catch: this expression depends on expectation values
with respect to other data sets generated from the same
processes. Cannot be computed in practice.

Heuristics: replace expectation values by the actually
observed values.



GeneNet (Strimmer et al.)
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Application In Schaefer & Strimmer (text copied form their paper)

Analysis of a plant expression data set

Specifically, we reanalyzed expression time series
resulting from an experiment investigating the impact of
the diurnal cycle on the starch metabolism of Arabidopsis
thaliana

The data are gene expression time series measurements
collected at|11 different time points|(0, 1, 2, 4, 8, 12, 13,
14, 16, 20, and 24 hours after the start of the experiment).

After log-transforming the data we filtered out all
genes containing missing values and whose maximum
signal intensity value was lower than 5 on a log-base 2
scale. Subsequently, we applied the periodicity test of |38]
to identify the probes associated with the day-night cycle.
As a result, a subset of| 800 genes|remained for further
analysis.




Correlation graph,
150 leading edges from
Arabidopsis thaliana



Partial correlation graph
(CIG), 150 leading edges from
Arabidopsis thaliana




Degree distribution and power law
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Method

Sparse graphical Gaussian modeling of the isoprenoid gene network
in Arabidopsis thaliana

Anja Wille™™, Philip Zimmermann$, Eva Vranova 8, Andreas Fiirholz’s,
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Crosstalk between two metabolic pathways, from microarray data

Chloroplast (MEP pathway) Cytoplasm (MVA pathway)

/(;prs 1) [DxPs2) | D}_{Pssj\

Figure 1

Bootstrapped GGM of the isoprenoid pathway with a cutoff at 0.8, The solid undirected edges connecing individual genas {in boxes) represent the GGM.
Diotted directed edges mark the metabolic network, and are not part of the GGM. The grey shading indicates metabolic links to downstream pathweays.
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Theor Appl Genet (2010) 120:249-259
DOT 10.1007/500122-009-1214-z

ORIGINAL PAPER

Enriched partial correlations in genome-wide gene expression
profiles of hybrids (A. thaliana): a systems biological approach
towards the molecular basis of heterosis

Sandra Andorf * Joachim Selbig * Thomas Altmann -
Kathrin Poos + Hanna Witucka-Wall « Dirk Repsilber
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Network hypothesis of heterosis: additional
alleles - additional regulatory interactions in
the molecular network

Gene expression data were measured using Agilent’s
Arabidopsis thaliana Microarray The RNA was

obtained from seedlings of A. thaliana of |two homozygous

lines |[C24 and Columbia (Col-0; depicted as Col in the

following) and the reciprocal crosses C24 x Col and
Col x C24. Gene expression profiles were measured dur-
ing early development at|scven time points ([4, 6, 10, 13,
20, 25 and 30 days after sowing (DAS)].

GGMs applied to 1000 genes



Problem: short time series
Modify the research question

Rather than asking:

“How does the network structure change as a
consequence of additional alleles at the
heterozygous loci?"

which could not be answered with the given amount of
data — the authors asked the question:

“What is the impact of heterozygosity on the
overall connectivity of the molecular regulatory
network?"
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Shortcomings of GGMs
Pairwise interactions conditional on the
whole systems, but:
no proper scoring of the whole network

direct common indirect

co-regulation

intferaction regulator Intferaction

P(A,B)=P(A)-P(B)

But: P(A,B|C)#P(A|C)-P(B|C)
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Regulatory network
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Elementary molecular
biological processes

\ MRNA
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factors —_— @

J Translation
Promoter

i

Protein




Elementary molecular
biological processes
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Description with
differential equations

!

dt
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dt
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Description with
differential equations

—a2rCl = N\ clas[rCl = N\, clag.rC]

101 = AclrCl + AyrclanrC + Ny clbarC] - @

e = AcdlC] - Al

!
dt

ool = Alle)® — Al el



Degradation
|22 R
\

\ mRNA
Transcription Transcription K
factors /\/\/\/ @’
- Promoter
Concentrations
d N
—[Cl = AclrC) + Aay relazrCl + Ny relba.r €] = Ac|C]
Rates

Kinetic parameters g



Description with

differential equations
Concentrations

[a2.rC = N\ clas][rCl = A\, .clas. 10]/

a

dt

il

d—[C] — /\I([? C] -+ )\“2 Ip[a) IC] —+ )\52 I([bg IC] A [C}
d

dt




Parameters g known: Numerically integrate the
differential equations for different hypothetical

networks < .
H,

k1 Vi ks




Experiment:
Gene expression time series

Time

Can we Infer the correct gene
regulatory network?



Model selection for known parameters g

Gene expression time series
Measured gene predicted with different models

expression time series I H, :
| Hs
Time
Compare

v Time
Highest likelihood: best model

P(D|q, J\T/l)

Time



Model selection for unknown parameters g

Gene expression time series
Measured gene predicted with different models

expression time series I H, :
: | H,
Time

! Time
"z Joint maximum likelihood:
Time T T



1) Practical problem: numerical optimization

2) Conceptual problem: overfitting

ML estimate increases on increasing the
network complexity



Poorer fit to
the data

Overfitting problem

Poorer fit
to the data

Equal or
better fit to
the data



Regularization

E.g.: BIC

Data misfit term Regularization term

log P D|q; logN

Maximum Iikellhood Number of Number of
parameters parameters data points



Likelihood BIC

Complexity Complexity



Model selection: find the best pathway

Select the model M with the highest
posterior probabillity:

P(M|D) «x P(DIM)P(M)

This requires an integration over the
whole parameter space:

P(DIM) — /‘qu?.M)P(qM)dq



Comparison with BIC

P(D|M) = / P(D]q, M)P(q|M)dq

P(DIM) = /P(PqﬂM)M)dq = /exp [—E(q)]a’-q

E(q) = —log P(D|q, M)



P(D|M)

P(D|M)

Comparison with BIC

P(D|M) = / P(D]q, M)P(q|M)dq

/ P(Dlq. M)M)dq = / exp | - E(a)|dq

E(q) = —log P(D|q, M)

1

E(q) ~ E(4)+5(a—a)H(q—q)

T
L

exp [—E(ﬁ)] /exp[— :

P(D|g, M)

2

(2m)F
det H

1 o\ R
~(qg—q)'H(q —q)|dqg



Comparison with BIC

(2m)*

P(DIM) = P(D|g, M) T

1 k
log P(D|M) = log P(D|q, M) — 7 logdet H + 5 log(27)

"
log P(DIM) = log P(D|q, M) — %Zlog (—)

1=1



Comparison with BIC

(2m)"
det H

P(DIM) = P(D|g, M)

1 k
log P(D|M) = log P(D|q, M) — 7 logdet H + 5 log(27)

k
1 €
log P(DIM) = log P(D|g, M) — 9 Zlog (2—1)




Comparison with BIC

(2m)*

P(DIM) = P(D|g, M) T

1 k
log P(D|M) = log P(D|q, M) — 7 logdet H + 5 log(27)

BIC approximation



Model selection: find the best pathway

Select the model M with the highest
posterior probabillity:

P(M|D) «x P(DIM)P(M)

This requires an integration over the
whole parameter space:

P(DIM) — /‘qu?.M)P(qM)dq



Model selection: find the best pathway

Select the model M with the highest
posterior probabillity:

P(M|D) x P(D|IM)P(M)

This requires an integration over the
whole parameter space:

P(DIM) — /‘qu?.M)P(qM)dq

This integral is usually
analytically intractable



Complexity problem

This requires an integration over the
whole parameter space.:

P(DIM) = / P(D|q, M)P(q|M)dq

The numerical approximation is
highly non-trivial
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Numerical integration by
sampling from the prior

Model: S Parameters: ¢

P(DIS) = | P(D|.5)P(6/5)d¢

| Y

P(DIS) = + 3 P(D|$,.5)
t=1

where {¢;} is a sample from

the prior distribution P(¢|S)



Problem: Extremely poor
convergence in high dimensions

Prior distribution

P(¢[5)

Likelihood function
P(D|¢.S)

Taken from the MSc thesis by Ben Calderhead



Numerical integration by
sampling from the posterior

Model: S' Parameters: ¢
P(Dl|¢, 5)P(¢|S) = P(¢|D,S)P(D|S)

P($/S) P($/D.S)
P09~ | PDé.5)"
1 ($/D. 5)

d

(D|s> / P(D . S> ¢

(’D|S N ZP ’D|¢t

where {¢;} 1s a sample from
the posterior distribution P(¢|D, S)



Problem: Poor convergence in high
dimensions and instability

Taken from the MSc thesis by Ben Calderhead

Prior distribution

P(¢[5)

Sampling from

the peaks
'

Likelihood function
P(D|¢.S)

Posterior distribution
P(¢|D,S)

Main contributions to the integral from the valleys



Importance sampling

P(DIS) = | P(D|.5)P(615)d¢

Arbitrary (possibly unnormalized) distribution Q(¢)

P(D|S) _ /P(qubjS)P(quS)Q(qb)
Z0 . Q(P) Zo
i A
P(D|S) 1 e
e P
¢y = P(DIP,.5)P(P,|9)

o

sampled from
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lllustration of annealed
Importance sampling

Posterior distribution

T=0.13

T=0.05

T

I
o

Taken from the MSc thesis by Ben Calderhead,

Prior distribution



Outer loop:

Annealing scheme

e

Centre loop:
MCMC

Inner loop:

Numerical solution of
differential equations
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Marginal likelihoods for the alternative pathways

44.6 0.8 s vy @ Ty 289403

35.0+£0.7
—1.14+0.1

Computational expensive, network
reconstruction ab initio unfeasible



ODbjective: Reconstruction of
regulatory networks ab Initio

Higher level of abstraction:
Bayesian networks
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Low osmolarity response genes

MAP kinase Transcription factors

Swi4/6

Low osmolarity
response genes
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P(DIM) — /P(D

q, M)P(q|M)dq

Under certain regularity conditions:
Integral analytically tractable!



Accuracy
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Mechanistic
models

Bayesian
networks

Conditional
independence graphs

Methods based on
correlation and mutual
information
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Computational complexity



