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The basics of clustering

Clustering

Introduction

I Clustering is the classification of data into subsets so that members of each
subset are similar (and ideally more similar to each other than to members of
other subsets)

I There are literally hundreds of different methods that can be used to cluster data
I Clustering finds application in a huge number of areas such as Biology,

Medicine, Geology, Chemistry, Market Research, Commerce, Social
Networking...

I We are interested in using clustering to both categorise and prioritise biological
data
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The basics of clustering

Features of unsupervised clustering

Advantages

I We make no assumptions about the structure of the data and by not introducing
priors (or a supervised scheme) we don’t add bias

I consistent results, i.e. initialising with the same conditions produces the same
results

Disadvantages

I Produces clusters even when the data has no structure
I Not clear which method is best or which parameters to set
I Rarely produce any indication of the robustness of the clusters themselves or the

members of the clusters (so not good for prioritisation within a cluster)
I The noise inherent in biological data sets is not particularly well suited to

unsupervised clustering
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The basics of clustering

Heirarchical Clustering

Description
I Heirarchical clustering uses either a bottom-up (agglomerative) or top-down (divisive) approach to group elements
I The differences between elements are calclated using a distance metric, often one of euclidean, manhattan or cosine

(for high-D)
I For agglomerative clustering an iterated process begins with each element as a cluster
I In the single-linkage method the two closest clusters are merged, the minimum distance is then calculated between

the closest elements of this cluster and the closest member of the next closest cluster
I The process is repeated until there is only one cluster left
I The output is a tree (dendrogram) which has to be cut at an appropriate height to reveal the clusters (next slide)
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The basics of clustering

Heirarchical Clustering

Dendrogram
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The basics of clustering

Heirarchical Clustering

Varieties
I single linkage - minimum distance between elements of each cluster
I complete linkage - maximum distance between elements of each cluster
I UPGMA - average linkage clustering, i.e. the average distance between elements of each cluster
I various others based on changes in variance, such as minimise the variance on merging etc..
I can also do the reverse "divisive" heirarchical clustering

19 / 105



The basics of clustering

Heirarchical Clustering

Varieties
I single linkage - minimum distance between elements of each cluster
I complete linkage - maximum distance between elements of each cluster
I UPGMA - average linkage clustering, i.e. the average distance between elements of each cluster
I various others based on changes in variance, such as minimise the variance on merging etc..
I can also do the reverse "divisive" heirarchical clustering

20 / 105



The basics of clustering

Heirarchical Clustering

Varieties
I single linkage - minimum distance between elements of each cluster
I complete linkage - maximum distance between elements of each cluster
I UPGMA - average linkage clustering, i.e. the average distance between elements of each cluster
I various others based on changes in variance, such as minimise the variance on merging etc..
I can also do the reverse "divisive" heirarchical clustering

21 / 105



The basics of clustering

Heirarchical Clustering

Varieties
I single linkage - minimum distance between elements of each cluster
I complete linkage - maximum distance between elements of each cluster
I UPGMA - average linkage clustering, i.e. the average distance between elements of each cluster
I various others based on changes in variance, such as minimise the variance on merging etc..
I can also do the reverse "divisive" heirarchical clustering

22 / 105



The basics of clustering

Heirarchical Clustering

Varieties
I single linkage - minimum distance between elements of each cluster
I complete linkage - maximum distance between elements of each cluster
I UPGMA - average linkage clustering, i.e. the average distance between elements of each cluster
I various others based on changes in variance, such as minimise the variance on merging etc..
I can also do the reverse "divisive" heirarchical clustering

23 / 105



The basics of clustering

Partitional Clustering

Description
I Again we chose a distance metric to quantify the properties of each element, in addition we must chose the cluster

number (k) at the start
I We begin by randomly chosing k centoids (centres) from the elements
I Next we find the closest element to each center and calculate the centroid of the two (nominally the average)
I We repeat this process until a convergence criterion has been met, often maximising distance between clusters and

minimising variance within clusters
I Note that unlike the heirarchical clustering described previously k-means can produce different results depending

on the initial centroids and on the success of convergence
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The basics of clustering

Partitional Clustering

K-means clustering
I We start with a simple example of data points distributed in 2D space
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The basics of clustering

Partitional Clustering

K-means clustering
I Begin by assigning start points for k clusters
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The basics of clustering

Partitional Clustering

K-means clustering
I Find the closest member
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The basics of clustering

Partitional Clustering

K-means clustering
I Recalculate the centre of the cluster (often this is the medoid rather than average as shown here
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The basics of clustering

Partitional Clustering

K-means clustering
I Repeat the process
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The basics of clustering

Partitional Clustering

K-means clustering
I Finish when the change in centre is minimised
I i.e. if we now included a member from the other cluster the centre would move a lot
I we minimise intra-cluster variation and maximise inter-cluster variation (distance)
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The basics of clustering

Problems with the clustering process

I Most clustering algorithms need to be provided with the cluster number
I There are many classes of clustering method

partitional
hierarchical
fuzzy
density based
modelled

I There are many distance metrics (similarity scoring methods)
euclidean, pearson, Manhattan, cosine, Mahalanobis, Hamming...

I There are many scoring systems to assess success
GAP statistic, Mean, Median Split Silhouette, Elbow plot...

We need methods that help us to chose the algorithm, conditions and cluster number
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The basics of clustering

Properties of an clustering efficacy method

I Statistically principled - we need to be able to assess cluster and membership robustness
I Applicable to the general case - it needs to work for any algorithm
I Computationally tractable - relatively fast with possibility of parallelisation
I Integratation of clustering results from different methods for comparison

I Ideally assist in cluster number determination

consensus clustering
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Consensus clustering

The connectivity matrix

cluster membership cluster membership indices

Indices Members
I1 = 1,2,4 a,b,d
I2 = 3,5 c,e
I3 = 6 f
I4 = 7,8 g,h

simple connectivity matrix
a b c d e f g h

a 1 1 0 1 0 0 0 0
b 1 1 0 1 0 0 0 0
c 0 0 1 0 1 0 0 0
d 1 1 0 1 0 0 0 0
e 0 0 1 0 1 0 0 0
f 0 0 0 0 0 1 0 0
g 0 0 0 0 0 0 1 1
h 0 0 0 0 0 0 1 1
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Consensus clustering

Ensemble clustering - a re-sampling approach

I In order to assess robustness we will cluster the expression data may times using only a
sample of the rows

I From these results we will calculate the connectivity matrix and the identity matrix
(which were drawn)

I We calculate the average connectivity between any two members normalised against their
sampling frequency

I The resulting matrix is called the consensus matrix and measures the average
connectedness of any two members

I This process can be carried out using any combination of clustering algorithms and/or
parameters

I The variation of consensus matrix over cluster number (k) can be used to derive the
optimal k

I The consensus matrix can be used to calculate cluster robustness and membership
robustness
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Consensus clustering

Ensemble clustering - a re-sampling approach

Example of a re-sample where the clusters produced are always the same

connectivity matrix

a b c d
a 2 1 0 0
b 1 2 0 0
c 0 0 2 2
d 0 0 2 3

identity matrix

a b c d
a 2 1 1 2
b 1 2 1 2
c 1 1 2 2
d 2 2 2 3

consensus matrix

a b c d
a 1 1 0 0
b 1 1 0 0
c 0 0 1 1
d 0 0 1 1

i.e. (a,b) and (c,d) always cluster together if they are in the draw together

Cluster consensus
a b c d

1 1 1 0 0
2 0 0 1 1
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Consensus clustering

Metrics to assess the efficacy of clustering

connectivity matrix

M(h)
(i, j) =


1 if items i and j belong to the same cluster

0 otherwise

consensus matrix

M(i, j) =

P
h M(h)(i, j)P
h I(h)(i, j)

cluster robustness

m(k) =
1

Nk(Nk − 1)/2

X
i,j∈Ik

i<j

M(i, j)

member confidence

mi(k) =
1

Nk − 1{ei ∈ Ik}
X
j∈Ik
j 6=i

M(i, j)

Monti et al. Machine Learning:52,91-118 (2003)
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Consensus clustering

clusterCons an R package for consensus clustering

I Collection of methods for performing consensus clustering in R
I Currently implemented for the major Bioconductor clustering methods :- agnes, pam,

kmeans, hclust and diana. This is user extensible through simple generic wrapper
template.

I Uses native command line arguments of existing clustering methods via a method wrapper
I Fully configurable analysis using any number of algorithms with user customised

parameters
I Primary outputs are S4 class objects holding consensus matrices, cluster robustness

matrices, and membership robustness matrices.

I S4 class slots hold a range of data and analysis objects for downstream applications e.g.
plotting, cluster ouput and post-hoc matrix manipulation
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Consensus clustering

An example analysis with clusterCons

Running the consensus clustering experiment

I the general resampling function cluscomp
cluscomp<-function(x,

algorithms=list(’kmeans’),
alparams=list(),
alweights=list(),
clmin=2,clmax=10,
prop=0.8,reps=50,merge=1)

I an example
cmr<-cluscomp(testdata,

algorithms=c(’kmeans’,’pam’,’agnes’,’hclust’,’diana’),merge=1,clmin=2,clmax=10,reps=500)

I returns a list of S4 class objects of class consmatrix and/or mergematrix
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Consensus clustering

An example analysis with clusterCons

Getting cluster robustness information
I the cluster robustness method cl_rob

cl_rob <- function(x,rm=data.frame())

I an example

cr<-cl_rob(cmr$kmeans_5)

cluster robustness
1 0.6249620
2 0.9988996
3 0.6781015
4 0.7681833
5 0.9606562
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Consensus clustering

An example analysis with clusterCons

Getting member robustness information
I the member robustness method mem_rob

mr <- mem_rob(current$cms$kmeans_5)
I an example

cluster2 <- mr$cluster2
cluster robustness

1626527_at 0.9998077
1630304_at 0.9998028

1629886_s_at 0.9996142
1623909_s_at 0.9996044
1627000_s_at 0.9996006
1633936_a_at 0.9994159
1626485_at 0.9993952
1624548_at 0.9993932
1628125_at 0.9993893
1638183_at 0.9993852
1633512_at 0.9992331
1623565_at 0.9992260
1624393_at 0.9992013
1637360_at 0.9992013

1631281_a_at 0.9991935
1636558_a_at 0.9991830
1637708_a_at 0.9906468
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Consensus clustering

An example analysis with clusterCons

Calculating the area under the curve
I If we re-sample using an iteration of cluster numbers we can look at the AUC to judge performance

ac <- aucs(current$cms) - (auc shown just for algorithm ’agnes’)

cluster auc
2 0.3908623
3 0.4412078
4 0.5195906
5 0.5901873
6 0.6455020
7 0.7178445
8 0.7681852
9 0.8071388

10 0.8317600
I an example plot

auc.plot(ac)
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Consensus clustering

An example analysis with clusterCons

AUC versus cluster number for 5 algorithms and the merge

70 / 105



Consensus clustering

An example analysis with clusterCons

Calculating the change in the area under the curve
I Any peaks in the chane in the area under the curve represent local maxima for optimal cluster number

dk <- deltak(current$cms) - (deltak shown just for algorithm agnes)

cluster ∆ k
2 0.39086234
3 0.12880611
4 0.17765514
5 0.13586986
6 0.09372386
7 0.11207177
8 0.07012760
9 0.05070854

10 0.03050431
I an example plot

deltak.plot(dk)
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Consensus clustering

An example analysis with clusterCons

Change in AUC (∆ k) versus cluster number for 5 algorithms and the merge
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Consensus clustering

Live examples with clusterCons

I Example1 - consensus clustering with simulated data by row and class
I Example2 - finding patient cancer sub-type by gene expression microarray

clustering
I clusterCons - https://sourceforge.net/projects/clustercons/
I clusterCons - http://cran.r-project.org/web/packages/clusterCons/index.html
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Co-regulation of genes during Drosophila PNS development

Anatomy of the Drosophila PNS - Sense organs
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Co-regulation of genes during Drosophila PNS development

Development of the Drosophila PNS
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Co-regulation of genes during Drosophila PNS development

RNA profiling cells expressing proneural genes throughout PNS development

I transgenic flies are made that
express GFP under the control of
a proneural gene enhancer

I developmentally staged embryos
are harvested and the cells
dissociated

I cells are sorted by GFP
fluorescence, RNA extracted and
then hybridised to Affymetrix
Dros2.0 microarray chips

I experiments performed for
atonal, scute, amos and cato

Sebastian Cachero and Petra zur Lage

76 / 105



Co-regulation of genes during Drosophila PNS development

RNA profiling cells expressing proneural genes throughout PNS development

I transgenic flies are made that
express GFP under the control of
a proneural gene enhancer

I developmentally staged embryos
are harvested and the cells
dissociated

I cells are sorted by GFP
fluorescence, RNA extracted and
then hybridised to Affymetrix
Dros2.0 microarray chips

I experiments performed for
atonal, scute, amos and cato

Sebastian Cachero and Petra zur Lage

77 / 105



Co-regulation of genes during Drosophila PNS development

RNA profiling cells expressing proneural genes throughout PNS development

I transgenic flies are made that
express GFP under the control of
a proneural gene enhancer

I developmentally staged embryos
are harvested and the cells
dissociated

I cells are sorted by GFP
fluorescence, RNA extracted and
then hybridised to Affymetrix
Dros2.0 microarray chips

I experiments performed for
atonal, scute, amos and cato

Sebastian Cachero and Petra zur Lage

78 / 105



Co-regulation of genes during Drosophila PNS development

RNA profiling cells expressing proneural genes throughout PNS development

I transgenic flies are made that
express GFP under the control of
a proneural gene enhancer

I developmentally staged embryos
are harvested and the cells
dissociated

I cells are sorted by GFP
fluorescence, RNA extracted and
then hybridised to Affymetrix
Dros2.0 microarray chips

I experiments performed for
atonal, scute, amos and cato

Sebastian Cachero and Petra zur Lage

79 / 105



Co-regulation of genes during Drosophila PNS development

Identifying expression programmes and profiles

I expression programmes
- analysis of genes enriched in proneural expressing cell types at each developmental time-point
- candidate lists of network members
- cis-regulatory motif analysis of candidate network members -> state based module discovery

I expression profiling (co-expression analysis)
- grouping of genes with shared expression profiles - target discovery and local network assembly
- cis-regulatory motif analysis - developmental module discovery

I module integration
- intersection of state and developmental modules defines the global membership of the neurogenetic

regulatory network
- modules that are active at each stage can be separated from developmental modules
- intersection of developmental modules with state based candidate lists reveals control switching
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Co-regulation of genes during Drosophila PNS development

Grouping genes by expression measures

I grouping genes by expression is not the same as by profile
I genes sharing similar expression profiles need not cluster together
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Co-regulation of genes during Drosophila PNS development

Grouping genes by expression profiles

I using the same simulated data we can show expression profile groups by unitising the vector space
I genes sharing similar expression profiles now cluster together
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Co-regulation of genes during Drosophila PNS development

Before and After Unitisation
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Co-regulation of genes during Drosophila PNS development

Following the expression of early atonal genes

I isolated genes that are enriched at atonal timepoint 1 (fold-change >=2, 1%FDR) - 159 genes
I followed their expression at wt t1, t2, t3 and at t1 in the atonal mutant
I before unitisation genes are mainly clustered around the origin
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Following the expression of early atonal genes

I isolated genes that are enriched at atonal timepoint 1 (fold-change >=2, 1%FDR) - 159 genes
I followed their expression at wt t1, t2, t3 and at t1 in the atonal mutant
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Co-regulation of genes during Drosophila PNS development

Following the expression of early atonal genes

I unitised expression data are now clustered
I this example uses an agglomerative hierarchical algorithm
I the plot is colour coded by cluster membership
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Co-regulation of genes during Drosophila PNS development

Following the expression of early atonal genes

I mapping the cluster membership colours onto the non-unitised expression data
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Co-regulation of genes during Drosophila PNS development

Following the expression of early atonal genes

I plot the actual unitised expression values atonal-GFP+ cells by cluster
I there are discrete expression profiles for these groups of genes
I profiles are broadly consistent with the categories we would expect to see
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Co-regulation of genes during Drosophila PNS development

Following the expression of early atonal genes

cluster membership

Cluster Size
C1 13
C2 36
C3 23
C4 16
C5 65
C6 6

cluster 3
Sensory Organ Development

GO:0007423 (p=6e-6)
Gene name

argos ato
CG6330 CG31464

CG13653 nrm
unc sca
rho ImpL3

CG11671 CG7755
CG16815 CG15704
CG32150 knrl
CG32037 Toll-6

phyl nvy
cato
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Co-regulation of genes during Drosophila PNS development

Heatmap of the consensus matrix
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Co-regulation of genes during Drosophila PNS development

Ensemble clustering for early enriched atonal genes

Re-sampling using hclust, it=1000, rf=80%

cluster robustness

cluster rob
1 0.4731433
2 0.7704514
3 0.7295124
4 0.7196309
5 0.7033960
6 0.6786388

membership robustness

cluster3
affy_id mem affy_id mem

1639896_at 0.68 1641578_at 0.56
1640363_a_at 0.54 1623314_at 0.53
1636998_at 0.49 1637035_at 0.36
1631443_at 0.35 1639062_at 0.31
1623977_at 0.31 1627520_at 0.3
1637824_at 0.28 1632882_at 0.27
1624262_at 0.26 1640868_at 0.26
1631872_at 0.26 1637057_at 0.24
1625275_at 0.24 1624790_at 0.22
1635227_at 0.08 1623462_at 0.07
1635462_at 0.03 1628430_at 0.03
1626059_at 0.02

there are 8 out of 23 genes with <25% conservation in the cluster
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Co-regulation of genes during Drosophila PNS development

Membership confidence mapped back onto unitised expression plots
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Co-regulation of genes during Drosophila PNS development

Application to the study of ciliogenesis

I Ciliated sensory neurons
- Most sensory neurons have cilia at their dendritic tips
- Cilia play crucial and highly conserved roles in motility, molecular transport and developmental processes

such as left-right symmetry and sense organ development
- Mutations in Rfx proteins are associated with defects in ciliogenesis in many organisms including

Drosophila

I The X-box, comparative genetics and the ciliome
- Rfx proteins bind to the X-box RYYNYYN[1-3]RRNRAC is bound by Rfx proteins
- Genome screens for conserved X-boxes have recently been used to identify novel targets of Rfx proteins in

Drosophila (Laurencon et al. Genome Biology(2007)8,R195)
- Compared D.mel and D.pse common ancestor 40-60 mya
- intron sequences 40% identical, known binding sites from the literature mapped on are 63% identical
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Co-regulation of genes during Drosophila PNS development

cis-regulatory modules (CRMs) an entry point for network assembly

I based on 75% conservation there are 7823 X-boxes in the fly genome (0.5/gene) so we expect 13 in list of 27
I sensory cluster has 50 conserved X-boxes an enrichment of x3.8
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Summary

Summary

Summary

I The large variability in results from different clustering methodologies makes it difficult to be confident of
clustering experiments performed in isolation

I Implementation of consensus clustering methodologies can allow the prioritisation of clusters allowing
prioritisation of both groups and members of groups

I Unsupervised clustering methods have to be used in situations where the supervising data is sparse or of low quality
(as is often the case with biological data).

I Clustering can reveal novel biological groupings in high order data and inform gene prioritisation efforts.
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