

#### **Aims**

- To give a biologist's view of microarray experiments
- To explain some technologies involved
- To describe typical microarray experiments
- To show how to get the most from and experiment
- To show where the field is going

February 3rd 2010

#### Introduction

- Part 1
  - Microarrays in biological research
  - A typical microarray experiment
  - Experiment design, data pre-processing
- Part 2
  - Data analysis and mining
  - Microarray standards and resources
  - Recent advances

February 3rd 2010

MSc Seminar: Donald Dunbar

# **Microarray Informatics**

Part 1

February 3rd 2010

# Biological research

- Using a wide range of experimental and computational methods to answer biological questions
- Genetics, physiology, molecular biology...
- Biology and informatics → bioinformatics
- Genomic revolution
- What can we measure?

February 3rd 2010







# Measuring transcripts

- Genome level sequencing
- New miniaturisation technologies
- Better bioinformatics





February 3rd 2010

MSc Seminar: Donald Dunbar

# Microarrays: wish list

- Include all genes in the genome
- Include all splice variants
- Give reliable estimates of expression
- Easy to analyse
  - bioinformatics tools available
- Cost effective



February 3rd 2010

# Microarray technologies - 1



- Oligonucleotides Affymetrix
- One chip all genes
- AFFYMETRIX
- Chips for many species
- Several oligos per transcript
- Use of control, mismatch sequences
- One sample per chip
  - 'absolute quantification'
- Well established in research
- Expensive

February 3rd 2010

MSc Seminar: Donald Dunbar

# Microarray technologies - 1 Total RNA Reverse Transcription AAAAA Reverse Transcription Fragmentation Fragmented, Biotin-tabeled CRNA Biotin-tabeled CRNA Biotin-tabeled CRNA Fragmentation Fragmented, Biotin-tabeled CRNA Biotin-ta



# Problems with microarrays

- The gene might not be on the chip
- Can't differentiate splice variants
- The gene might be below detection limit
- Can't differentiate RNA synthesis and degradation
- Can't tell us about post translational events
- Bioinformatics can be difficult
- Relatively expensive

February 3rd 2010

# History of Microarrays

- Developed in early 1990s after larger macro-arrays (100-1000 genes)
- Microarrays were spotted on glass slides
- Labs spotted their own (Southern, Brown)
- Then companies started (Affymetrix, Agilent)
- Some early papers:
  - Nature 1993 364(6437): 555-6 Multiplexed biochemical assays with biological chips. Fodor SP, et al
  - Science 1995 Oct 20;270(5235):467-70 Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Schena M, et al

February 3rd 2010



# Types of experiment

Usually control v test(s)

Placebo

Drug treatment

Knockout

Drug 2...

Wild-type

Healthy

**Patient** 

Normal tissue

Cancerous tissue

Time = 0

Time = 1 Time = 2...

February 3rd 2010

MSc Seminar: Donald Dunbar

# Types of experiment

- Usually control v test(s)
- But also test v test(s)
- Comparison:
  - placebo v drug treatment
  - drug 1 v drug 2
  - tissue 1 v tissue 2 v tissue 3 (pairwise)
  - time 0 v time 1, time 0 v time 2, time 0 v time 3
  - time 0 v time 1, time 1 v time 2, time 2 v time 3

February 3rd 2010

# A typical experiment



February 3rd 2010

MSc Seminar: Donald Dunbar

# Experiment design: system

- What is your model?
  - animal, cell, tissue, drug, time...
- What comparison?







- What platform
  - microarray? oligo, cDNA?
- Record all information: see "standards"

February 3rd 2010

# Experiment design: replicates

- Microarrays are noisy: need extra confidence in the measurements
- We usually don't want to know about a specific individual
  - eg not an individual mouse, but the strain
  - although sometimes we do (eg people)
- Biological replicates needed
  - independent biological samples
  - number depends on variability and required detection
- Technical replicates (same sample, different chip) usually not needed

February 3rd 2010



#### Raw data

- Affymetrix GeneChip process generates:
  - DAT image file
  - CEL raw data file



- CDF chip definition file
- Processing then involves CEL and CDF
- Will use Bioconductor

February 3rd 2010

MSc Seminar: Donald Dunbar

### Bioconductor (BioC)



- http://www.bioconductor.org/
- "Bioconductor is an open source software project for the analysis and comprehension of genomic data"
- Started 2001, developed by expert volunteers
- Built on statistical programming environment "R"
- Provides a wide range of powerful statistical and graphical tools
- Use BioC for most microarray processing and analysis
- Most platforms now have BioC packages
- Tutorial: manuals.bioinformatics.ucr.edu/home/R\_BioCondManual

February 3rd 2010

# Quality control (QC)

- Affymetrix gives data on QC
  - the microarray team will record these for you
  - scaling factor, % present, spiked probes, internal controls
- Bioconductor offers:
  - boxplots and histograms of raw and normalised data
  - RNA degradation plots
  - specialised quality control routines (eg arrayQualityMetrics)



# Pre-processing: background

- Signal corresponds to expression...
  - plus a non-specific component (noise)
- Non specific binding of labelled target
- Need to exclude this background
- Several methods exist
  - eg Affy: PM-MM but many complications
  - eg RMA PM=B+S (don't use MM)

February 3rd 2010

#### Pre-processing: normalisation In addition to background corrections chip, probe, spatial, intra and inter need to remove to get at real e differences Make use of combined with summary: get an expres lue for the gene But seems to be i dependency on intensity additive and r Quantile norm often used Normalisat complicated for 2-colour arrays Try to re ost noise at lab stage (ie control things well statistical February 3rd 2010 MSc Seminar: Donald Dunbar



# Part 1 Summary

- Microarrays in biological research
- Two types of microarray
- A typical microarray experiment
- Experiment design
- Data pre-processing

February 3rd 2010

MSc Seminar: Donald Dunbar

# **Microarray Informatics**

Part 2

February 3rd 2010





#### Multiple testing

- Problem:
  - statistical testing of 30,000 genes
  - at  $\alpha = 0.05 \rightarrow 1500$  genes
- Need to correct this
  - Multiply p-value by number of observations
    - · Bonferroni, too conservative
  - False discovery
    - · defines a q value: expected false positive rate
    - · Less conservative, but higher chance of type I error
    - · Benjamini and Hochberg
- Then regard genes as differentially expressed
- Depends on follow-up procedure!

February 3rd 2010

MSc Seminar: Donald Dunbar

## Hierarchical clustering

- Look for structure within dataset
  - similarities between genes
- Compare gene expression profiles
  - Euclidian distance
  - Correlation
  - Cosine correlation
- Calculate with distance matrix
- Combine closest, recalculate, combine closest... (or split!)
- Draw dendrogram and heatmap

February 3rd 2010





## Hierarchical clustering

- Predicting association of known and novel genes
- Class discovery in samples: new subtypes
- Visualising structure in data (sample outliers)
- Classifying groups of genes
- Identifying trends and rhythms in gene expression
- Caveat: you will always see clusters, even when they are not particularly meaningful (nb Ian Simpson)

February 3rd 2010

MSc Seminar: Donald Dunbar

# Sample classification

- Supervised or non-supervised
- Non-supervised
  - like hierarchical clustering of samples
- Supervised
  - have training (known) and test (unknown) datasets
  - use training sets to define robust classifier
  - apply to test set to classify new samples

February 3rd 2010





### Sample classification

- Class prediction for new samples
  - cancer prognosis
  - pharmacogenomics (predict drug efficacy)
- Need to watch for overfitting
  - using too much of the data to classify
  - classifier loses specificity

February 3rd 2010

MSc Seminar: Donald Dunbar

#### **Annotation**

- Big problem for microarrays
- Genome-wide chips need genome-wide annotation
- Good bioinformatics essential
  - use several resources (Affymetrix, Ensembl)
  - keep up to date (as annotation changes)
  - genes have many attributes
    - name, symbol, gene ontology, pathway...

February 3rd 2010

#### **Data-mining**

# Microarrays are a waste of time

# ...unless you do something with the data

February 3rd 2010

MSc Seminar: Donald Dunbar

#### **Data-mining**

- Once data are statistically analysed:
  - pull out genes of interest
  - pull out pathways of interest
  - mine data based on annotation
    - what are the expression patterns of these genes
    - what are the expression patterns in this pathway
  - mine genes based on expression pattern
    - what types of genes are up-regulated ...
    - · fold change, p-value, expression level, correlation
- Should be driven by the biological question

February 3rd 2010

| Annotation            | ry or leave bla                         | nk (bad idea:   | lots of data!  |               |             |               |          |                                                 |
|-----------------------|-----------------------------------------|-----------------|----------------|---------------|-------------|---------------|----------|-------------------------------------------------|
| Annotation            | 511100000000000000000000000000000000000 | nk (bad idea:   | lots of data!  |               |             |               |          |                                                 |
| Annotation            | 511100000000000000000000000000000000000 | ur (oan mea:    |                |               | then subs   | .5            |          |                                                 |
|                       |                                         |                 | note of Galary | Tot all Gall  | s, men suoi |               |          |                                                 |
|                       |                                         |                 |                |               |             |               |          |                                                 |
| Affymetrix 1          |                                         |                 |                |               |             |               |          | *                                               |
| Entrez Gene           | e ID                                    |                 |                |               |             |               |          | Expression maxima and minima                    |
| Gene Title            |                                         |                 |                |               |             |               |          | < >                                             |
| Gene Symb             |                                         |                 |                |               |             |               |          | BAT max/min                                     |
| Gene Ontol            | ogy Term                                | _               |                |               |             |               |          | BAT max - min                                   |
| Pathway<br>Chromoson  |                                         |                 |                |               |             |               |          | WAT max/min                                     |
| Chromoson             | ne                                      | -               |                |               |             |               |          | WAT max - min                                   |
| Groups                |                                         |                 |                |               |             |               |          | Liver max/min                                   |
| In or Out             |                                         | Any 💌           |                |               |             |               |          | Liver max - min                                 |
|                       |                                         |                 |                |               |             |               |          | Liver max - man                                 |
| Comments              |                                         |                 |                |               |             |               |          | Correlation with circadian gene profiles        |
| Comments              |                                         |                 |                |               |             |               |          |                                                 |
| Submit Quer           | y or Reset                              |                 |                |               |             |               |          | Which gene? pert V Tissue BAT V Rank limit      |
| Expression            | Oueries                                 |                 |                |               |             |               |          | Order                                           |
|                       |                                         |                 |                |               |             |               | _        |                                                 |
| Genes that a          | are "not expre                          | ssed at all" ar | e hidden. If t | aat's fine, l | eave @yes   | if not, click | Ono.     | Order output by Gene symbol Mand Ascending Mand |
|                       | 1 2                                     | 3               | 4              | 5             | 6           | 7             | Filter   |                                                 |
|                       |                                         |                 | <              | <             | < >         | <             | 0        | Submit Query or Reset                           |
| BAT <                 | <                                       | <               |                |               |             | >             | ( Seed ) |                                                 |
| BAT <                 | <<br>>                                  | >               | >              | >             |             |               |          | Home                                            |
| 31                    | >                                       | >               | <              | <             | <           | <             | 0        | Home                                            |
| BAT >  WAT >  Liver > | <<br>>                                  | >               |                |               |             |               |          | Home                                            |













|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |            | experised) a l  |          |           |            |            | -             |                | -             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|-----------------|----------|-----------|------------|------------|---------------|----------------|---------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | adres | d hyperton | raion blood pre | some ACT | Hillow to | di bew sod | mm jestech | larda (kepepi | lenda (sterne) | id retraction |
| a dicietegriu and metalloprotease domain 8 OR Adami)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t     | 2          |                 |          | . 0       | 1          | 1          | 9             | 9              | 1             |
| abbydrolase domain containing 2 OR Abbd2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 1          |                 |          | 0         | 51         | 1          | 100           | 8              | 1             |
| antitating transcription factor 3 OR AID)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 12         | 12              |          | R         | 11         |            | 10            | A.             | 2             |
| scyl-CoA cynthetere long-chain Off Acolity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T)-   | 1          | I               | à        | 0         | li .       | 11.        | 10            | 120            | 11            |
| adrillia OR Avil)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12    | 335        | 110             | 1        | 4         | 12         | 12         | 2             | 157            | 23            |
| skubol dekydrogenese 7 OR Adh?)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1     | 13         | T.              | I        | 11.       |            |            | 18            | (1)            | M             |
| aldeliyde deliydrogenaw I family, member E2 OR AldEE2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t     | 10         | 10              | 10       | li)       | 9          | 1          | 10            | 0              |               |
| ablehyde dehydrogenare 18 family, member A1 OR Alfh1fa1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | R          | 10              | . 12     | 22        | . 12       | -          | R             | R              | 4             |
| aldo Leto reduction family L. member C18 OR Alarle (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1     | 11         | 6               | - 6      | R         | N.         | 11         | 10:           | U.             | 2             |
| alkalise phosphatare J, Sver-OR Akp2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No.   | 255        | 8.2             |          | 10        | 2.6        | 17.0       | 120           | 2550           | (43)          |
| orginiar rarepressia-induced 5 OR Arpill)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1     | 100        | 124             | T.       | . 02      | 21         | - 11       | I.            | 13.6           | 17            |
| Nactoricidal permentility-increming protein-like 2 OR Rp82)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 10         | 10              | 10       | 0         | ėj.        |            | 0             | 10             | 10            |
| basic feacine sipper and W2 domains 1 OR Bowt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | -10        | . 10            | - 12     | 0         | 11         | 1          | 10            | 20             | 1             |
| SMP binding endorbellal orgalatus OR MG\$1920489)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | 10         | 10              | - 10     | 20        | li .       |            | 82            | 20             | 12            |
| Sounched chain uninotransferant I, cytosolic OR Beatty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 8          | 10              | 0        | D         | - to       |            | 10            | 1              |               |
| CB6 autigra-like OR C48()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9     | 10         | 10              | 10       | .0        | 0          | 12         | 10            | 10             | 10            |
| CDC38 protein kinase regulatory submait 2 OR Clss2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1     | 10         | 10 :            | 10       | D.        | M          | - 10       | 10            | 10             | 1             |
| CEA related cell adhesion molecule 2 OR Concurs?)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1     | le .       | D               |          | D         | 2          |            | U.            | le             | 1             |
| rell division cycle 2 brancing OR Cdc2a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | -          | 8               | 5        | 20        | - E        |            | 11            | 0.             | 1             |
| rentanta, gamma 2 OR Centg2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | -30        | 0               | 0        | D         |            | -          | 10            | 10             |               |
| rhidning 3-like 3 OK Ch(05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 30         | 10              | 10       | D.        | li .       | 1          | 10            | 10             |               |
| icoclin-dependent kinner inhibitor (C GR Cdkn(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ш     | b          | 10              | 12       | 0         | 1          | 11         | 45            | 19:            | D             |
| inventelle 8 OR Cvdl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1     | 14         | 1               | 10       | 2         | b          | 12         | l)            | 6              | 1             |
| cytochrome a saldase OR Coulai)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 104   | 41.        | 1206            | - 11     | 0.7       | 71         | 28         | 79            | 409            | 189           |
| synchiae receptor like factor I OK Celli)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 1          | -               |          | D         | 1          |            | 30            | 10             |               |
| DNA (cytosine 8.) methyltransfersor 3-like Oil Dansi No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | 1          | 10              | . 10     | 10        | 9          |            | O.            | 10             |               |
| down-regulated by Chashil, a Oil MCD2149000;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | ly .       | 10              | 10       | 20        | - fil      | -          | 30            | 10             | 10            |
| dystrobovia alpha GR Dtna)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _     | No.        | 10              | - 6      | .0        | 0          | - 12       | 14            | 10             | 1.            |
| reshigin OR East)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1     | 9          | D               | 1        | 9         |            | 14         | 3             | (2)            |               |
| Sally acid devaluation 2 OR Fads2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 1          |                 | 1        | 1         | 1          | 1          | 1             | De             | 1             |
| Biculed enlated protein Oil Freilo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | W          |                 | -        | b         | 1          | 1          | 11.           | 112            |               |
| The state of the s | 45    | 244        | 1219            | 115      | ш         | lu .       | 122        | 384           | 439            | 125           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |            |                 |          | -         |            |            |               | -170           |               |



# Further data-mining

- Other tools available using
  - gene ontology (GO)
  - biological pathways (eg KEGG)
  - genomic localisation (Ensembl)
  - regulatory sequence data (Toucan, BioProspector)
  - literature (eg Pubmatrix, Ingenuity...)
- ... to make sense of the data
- Links at: www.bioinf.mvm.ed.ac.uk/projects/analysis\_tools.html

February 3rd 2010

#### Microarray Resources

- Microarray data repositories
  - Array express (EBI, UK)
- GEO Gene Expression Omnibus
- Gene Expression Omnibus (NCBI, USA)
- CIBEX (Japan)
- Annotation
  - NetAffx, Ensembl, TIGR, Stanford...

February 3rd 2010

MSc Seminar: Donald Dunbar

# Microarray Standards

- MIAME
  - Minimum annotation about a microarray experiment
  - Comprehensive description of experiment
  - Models experiments well, and allows replication
     chips, samples, treatments, settings, comparisons
  - Required for most publications now
- MAGE-ML
  - Microarray gene expression markup language
  - Describes experiment (MIAME) and data
  - Tools available for processing

February 3rd 2010





### **Next Generation Sequencing**

- Sequence rather than hybridisation
- Gene expression, genotyping, epigenetics
- New technologies: much cheaper than before
- Gene expression, genotyping, epigenetics
- Open ended (no previous knowledge required)
- Will take over in 2 years: the end of microarrays?

February 3rd 2010

MSc Seminar: Donald Dunbar

## Part 2 Summary

- Data analysis
- Data Mining
- Microarray Resources
- Microarray Standards
- Recent & future advances

February 3rd 2010

# **Seminar Summary**

- Part 1
  - Microarrays in biological research
  - A typical microarray experiment
- Part 2
  - Data analysis and mining
  - Recent & future advances

February 3rd 2010

MSc Seminar: Donald Dunbar

#### Contact



- Donald Dunbar
- QMRI Bioinformatics
- donald.dunbar@ed.ac.uk
- **0131 242 6700**
- Room W3.01, QMRI, Little France
- www.bioinf.mvm.ed.ac.uk

February 3rd 2010