

Aims

- To give a biologist's view of microarray experiments
- To explain some technologies involved
- To describe typical microarray experiments
- To show how to get the most from and experiment
- To show where the field is going

February 3rd 2010 MSc Seminar: Donald Dunbar

Introduction

- Part 1
 - Microarrays in biological research
 - A typical microarray experiment
 - Experiment design, data pre-processing
- Part 2
 - Data analysis and mining
 - Microarray standards and resources
 - Recent advances

February 3rd 2010

MSc Seminar: Donald Dunbar

Microarray Informatics

Part 1

February 3rd 2010

MSc Seminar: Donald Dunbar

Biological research

- Using a wide range of experimental and computational methods to answer biological questions
- Genetics, physiology, molecular biology...
- Biology and informatics → bioinformatics
- Genomic revolution
- What can we measure?

February 3rd 2010

Problems with microarrays

- The gene might not be on the chip
- Can't differentiate splice variants
- The gene might be below detection limit
- Can't differentiate RNA synthesis and degradation
- Can't tell us about post translational events
- Bioinformatics can be difficult
- Relatively expensive

February 3rd 2010

MSc Seminar: Donald Dunbar

History of Microarrays

- Developed in early 1990s after larger macro-arrays (100-1000 genes)
- Microarrays were spotted on glass slides
- Labs spotted their own (Southern, Brown)
- Then companies started (Affymetrix, Agilent)
- Some early papers:
 - Nature 1993 364(6437): 555-6 Multiplexed biochemical assays with biological chips. Fodor SP, et al
 - Science 1995 Oct 20;270(5235):467-70 Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Schena M, et al

February 3rd 201

Time = 0

MSc Seminar: Donald Dunbar

Microarray publications

Types of experiment ■ Usually control v (test(s)) Placebo Wild-type Healthy Normal tissue Cancerous tissue

Time = 1

Time = 2...

February 3rd 2010 MSc Seminar: Donald Dunbar

Types of experiment

- Usually control v test(s)
- But also test v test(s)
- Comparison:
 - placebo v drug treatment
 - drug 1 v drug 2
 - tissue 1 v tissue 2 v tissue 3 (pairwise)
 - time 0 v time 1, time 0 v time 2, time 0 v time 3
 - time 0 v time 1, time 1 v time 2, time 2 v time 3

February 3rd 2010

A typical experiment

February 3rd 2010

MSc Seminar: Donald Dunb

Experiment design: system

- What is your model?
 - animal, cell, tissue, drug, time...
- What comparison?

- What platform
 - microarray? oligo, cDNA?
- Record all information: see "standards"

February 3rd 2010

MSc Seminar: Donald Dunbar

Experiment design: replicates

- Microarrays are noisy: need extra confidence in the measurements
- We usually don't want to know about a specific individual
 - eg not an individual mouse, but the strain
 - although sometimes we do (eg people)
- Biological replicates needed
 - independent biological samples
 number depends on variability and required detection
- Technical replicates (same sample, different chip) usually not needed

February 3rd 2010

MSc Seminar: Donald Dunba

A typical experiment experiment design collect samples prepare RNA chip process February 3rd 2010 MSc Seminar: Donald Durbar

Raw data

- Affymetrix GeneChip process generates:
 - DAT image file
 - CEL raw data file
- AFFYMETRIX.
- CDF chip definition file
- Processing then involves CEL and CDF
- Will use Bioconductor

February 3rd 2010

MSc Seminar: Donald Dunbar

Bioconductor (BioC)

- http://www.bioconductor.org/
- "Bioconductor is an open source software project for the analysis and comprehension of genomic data"
- Started 2001, developed by expert volunteers
- Built on statistical programming environment "R"
- Provides a wide range of powerful statistical and graphical tools
- Use BioC for most microarray processing and analysis
- Most platforms now have BioC packages
- Tutorial: manuals.bioinformatics.ucr.edu/home/R_BioCondManual

February 3rd 2010

- - the microarray team will record these for you
- scaling factor, % present, spiked probes, internal controls
- Bioconductor offers:
 - boxplots and histograms of raw and normalised data
 - RNA degradation plots
 - specialised quality control routines (eg arrayQualityMetrics)

Pre-processing: background

- Signal corresponds to expression...
 - plus a non-specific component (noise)
- Non specific binding of labelled target
- Need to exclude this background
- Several methods exist
 - eg Affy: PM-MM but many complications
 - eg RMA PM=B+S (don't use MM)

MSc Seminar: Donald Dunbar

Part 1 Summary

- Microarrays in biological research
- Two types of microarray
- A typical microarray experiment
- Experiment design
- Data pre-processing

February 3rd 2010

MSc Seminar: Donald Dunba

Microarray Informatics Part 2

February 3rd 2010

Multiple testing

- Problem:
 - statistical testing of 30,000 genes
 - at $\alpha = 0.05 \rightarrow 1500$ genes
- Need to correct this
 - Multiply p-value by number of observations
 - · Bonferroni, too conservative
- False discovery

 - defines a q value: expected false positive rate
 Less conservative, but higher chance of type I error
 - · Benjamini and Hochberg
- Then regard genes as differentially expressed
- Depends on follow-up procedure!

February 3rd 2010

Hierarchical clustering

- Look for structure within dataset
 - similarities between genes
- Compare gene expression profiles
 - Euclidian distance
 - Correlation
 - Cosine correlation
- Calculate with distance matrix
- Combine closest, recalculate, combine closest... (or split!)
- Draw dendrogram and heatmap

February 3rd 2010 MSc Seminar: Donald Dunbar

Hierarchical clustering

- Predicting association of known and novel genes
- Class discovery in samples: new subtypes
- Visualising structure in data (sample outliers)
- Classifying groups of genes
- Identifying trends and rhythms in gene expression
- Caveat: you will always see clusters, even when they are not particularly meaningful (nb lan Simpson)

February 3rd 2010

MSc Seminar: Donald Dunbar

Sample classification

- Supervised or non-supervised
- Non-supervised
 - like hierarchical clustering of samples
- Supervised
 - have training (known) and test (unknown) datasets
 - use training sets to define robust classifier
 - apply to test set to classify new samples

February 3rd 2010

MSc Seminar: Donald Dunbar

Sample classification good prognosis → drug treatment Gene selection, training, cross validation → classifier: gene x * 0.5 gene y * 0.25 gene z ... Rebusar 3rd 2010 MSc Serinar Denald Durber

Sample classification

- Class prediction for new samples
 - cancer prognosis
 - pharmacogenomics (predict drug efficacy)
- Need to watch for overfitting
 - using too much of the data to classify
 - classifier loses specificity

February 3rd 2010

MSc Seminar: Donald Dunbar

Annotation

- Big problem for microarrays
- Genome-wide chips need genome-wide annotation
- Good bioinformatics essential
 - use several resources (Affymetrix, Ensembl)
 - keep up to date (as annotation changes)
 - genes have many attributes
 - name, symbol, gene ontology, pathway...

February 3rd 2010

Data-mining

Microarrays are a waste of time

...unless you do something with the data

February 3rd 2010 MSc Seminar: Donald Du

Data-mining

- Once data are statistically analysed:
 - pull out genes of interest
 - pull out pathways of interest
 - mine data based on annotation
 - what are the expression patterns of these genes
 - · what are the expression patterns in this pathway
 - mine genes based on expression pattern
 - what types of genes are up-regulated ...
 - fold change, p-value, expression level, correlation
- Should be driven by the biological question

February 3rd 2010 MSc Seminar: Donald Dunbar

Further data-mining

- Other tools available using
 - gene ontology (GO)
 - biological pathways (eg KEGG)
 - genomic localisation (Ensembl)
 - regulatory sequence data (Toucan, BioProspector)
 - literature (eg Pubmatrix, Ingenuity...)
- ... to make sense of the data
- Links at: www.bioinf.mvm.ed.ac.uk/projects/analysis_tools.html

February 3rd 2010 MSc Seminar: Donald Dunbar

Microarray Resources

- Microarray data repositories
 - Array express (EBI, UK)
 - Gene Expression Omnibus (NCBI, USA)
 - CIBEX (Japan)
- Annotation
 - NetAffx, Ensembl, TIGR, Stanford...

February 3rd 201

MSc Seminar: Donald Dunbar

Microarray Standards

■ MIAME

- Minimum annotation about a microarray experiment
- Comprehensive description of experiment
- Models experiments well, and allows replication
 chips, samples, treatments, settings, comparisons
- Required for most publications now
- MAGE-ML
 - Microarray gene expression markup language
 - Describes experiment (MIAME) and data
 - Tools available for processing

February 3rd 2010 MSc Seminar: Donald Dunbar

Recent advances: Exon chips

 Affymetrix now have chips that allow us to measure expression of splice variants

0.66 (down moderately)

1.4 (up slightly)

3 (up strongly)

New chips will give us much more information

February 3rd 2010 MSc Seminar: Donald Dun

Recent advances: Genotyping chips

- All discussion on EXPRESSION chips
- Also can get chips looking at genotype
- Tell us the sequence for genome-wide markers
- Test 300,000 markers with one chip
- Look for association with disease, prognosis, trait...
- Combined with expression chips to generate
 - EXPRESSION QUANTITATIVE TRAIT LOCUS (eQTL)
 Overlap of expression and genetic differences (cis)
 - Correlation at different locus (trans)

February 3rd 2010 MSc Seminar: Donald Dunbar

Next Generation Sequencing

- Sequence rather than hybridisation
- Gene expression, genotyping, epigenetics
- New technologies: much cheaper than before
- Gene expression, genotyping, epigenetics
- Open ended (no previous knowledge required)
- Will take over in 2 years: the end of microarrays?

February 3rd 2010

MSc Seminar: Donald Dunbar

Part 2 Summary

- Data analysis
- Data Mining
- Microarray Resources
- Microarray Standards
- Recent & future advances

February 3rd 2010

Seminar Summary

- ■Part 1
 - Microarrays in biological research
 - A typical microarray experiment
- ■Part 2
 - Data analysis and mining
 - Recent & future advances

F-1------

MSc Seminar: Donald Dunbar

Contact

- Donald Dunbar
- QMRI Bioinformatics
- donald.dunbar@ed.ac.uk
- 0131 242 6700
- Room W3.01, QMRI, Little France
- www.bioinf.mvm.ed.ac.uk

February 3rd 2010