
1

Armstrong, 2010

Sequence Alignment

Armstrong, 2010

Why?

•  Genome sequencing gives us new gene
sequences

•  Network biology gives us functional
information on genes/proteins

•  Analysis of mutants links unknown genes to
diseases

•  Can we learn anything from other known
sequences about our new gene/protein?

Armstrong, 2010 Armstrong, 2010

What is it?

ACCGGTATCCTAGGAC

ACCTATCTTAGGAC

Are these two sequences related?
How similar (or dissimilar) are they?

Armstrong, 2010

What is it?

ACCGGTATCCTAGGAC

||| |||| ||||||

ACC--TATCTTAGGAC

•  Match the two sequences as closely as possible =
aligned

•  Therefore, alignments need a score

Armstrong, 2010

Why do we care?

•  DNA and Proteins are based on linear sequences
•  Information is encoded in these sequences
•  All bioinformatics at some level comes back to

matching sequences that might have some noise or
variability

2

Armstrong, 2010

Alignment Types

•  Global: used to compare to similar sized
sequences.
– Compare closely related genes
– Search for mutations or polymorphisms

in a sequence compared to a reference.

Armstrong, 2010

Alignment Types

•  Local: used to find shared subsequences.
– Search for protein domains
– Find gene regulatory elements
– Locate a similar gene in a genome

sequence.

Armstrong, 2010

Alignment Types

•  Ends Free: used to find joins/overlaps.
– Align the sequences from adjacent

sequencing primers.

Armstrong, 2010

How do we score alignments?

ACCGGTATCCTAGGAC
||| |||| ||||||

ACC--TATCTTAGGAC
•  Assign a score for each match along the

sequence.

Armstrong, 2010

How do we score alignments?

ACCGGTATCCTAGGAC
||| |||| ||||||

ACC--TATCTTAGGAC
•  Assign a score (or penalty) for each

substitution.

Armstrong, 2010

How do we score alignments?

ACCGGTATCCTAGGAC
||| |||| ||||||

ACC--TATCTTAGGAC
•  Assign a score (or penalty) for each

insertion or deletion.
•  insertions/deletions otherwise known as

indels

3

Armstrong, 2010

How do we score alignments?

ACCGGTATCCTAGGAC
||| |||| ||||||

ACC--TATCTTAGGAC

•  Matches and substitutions are ‘easy’ to deal
with.
– We’ll look at substitution matrices later.

•  How do we score indels: gaps?

Armstrong, 2010

How do we score gaps?

ACCGGTATCC---GAC
||| |||| |||

ACC--TATCTTAGGAC

•  A gap is a consecutive run of indels
•  The gap length is the number of indels.
•  The simple example here has two gaps of

length 2 and 3

Armstrong, 2010

How do we score gaps?

ACCGGTATCC---GAC
||| |||| |||

ACC--TATCTTAGGAC
•  Constant: Length independent weight
•  Affine: Open and Extend weights.
•  Convex: Each additional gap contributes less
•  Arbitrary: Some arbitrary function on length

Armstrong, 2010

Choosing Gap Penalties

•  The choice of Gap Scoring Penalty is very
sensitive to the context in which it is
applied:
–  introns vs exons
–  protein coding regions
– mis-matches in PCR primers

Armstrong, 2010

Substitution Matrices

•  Substitution matrices are used to score
substitution events in alignments.

•  Particularly important in Protein sequence
alignments but relevant to DNA sequences
as well.

•  Each scoring matrix represents a particular
theory of evolution

Armstrong, 2010

Similarity/Distance

•  Distance is a measure of the cost or
replacing one residue with another.

•  Similarity is a measure of how similar a
replacement is.

e.g. replacing a hydrophobic residue with a hydrophilic one.

•  The logic behind both are the same and the
scoring matrices are interchangeable.

4

Armstrong, 2010

DNA Matrices
Identity matrix BLAST
 A C G T A C G T
A 1 0 0 0 A 5 –4 –4 -4
C 0 1 0 0 C –4 5 –4 -4
G 0 0 1 0 G –4 –4 5 -4
T 0 0 0 1 T -4 –4 –4 5

However, some changes are more likely to occur than others (even in
DNA). When looking at distance, the ease of mutation is a factor. a.g.
A-T and A-C replacements are rarer than A-G or C-T.

Armstrong, 2010

Protein Substitution Matrices

 How can we score a substitution in an aligned
sequence?

•  Identity matrix like the simple DNA one.
•  Genetic Code Matrix:

 For this, the score is based upon the minimum number of
DNA base changes required to convert one amino acid into
the other.

Armstrong, 2010 Armstrong, 2010

Protein Substitution Matrices

 How can we score a substitution in an aligned
sequence?

•  Amino acid property matrix
 Assign arbitrary values to the relatedness of different
amino acids:
 e.g. hydrophobicity , charge, pH, shape, size

Armstrong, 2010

Matrices based on Probability

 Sij = log (qij/pipj)

 Sij is the log odds ratio of two probabilities: amino
acids i and j are aligned by evolutionary descent
and the probability that they aligned at random.

 This is the basis for commonly used substitution
matrices.

Armstrong, 2010

PAM matrices

 Dayhoff, Schwarz and Orcutt 1978 took these into
consideration when constructing the PAM
matrices:
 Took 71 protein families - where the sequences
differed by no more than 15% of residues (i.e.
85% identical)
 Aligned these proteins
 Build a theoretical phylogenetic tree
 Predicted the most likely residues in the

 ancestral sequence

5

Armstrong, 2010

PAM Matrices

•  Ignore evolutionary direction
•  Obtained frequencies for residue X being

substituted by residue Y over time period Z

•  Based on 1572 residue changes

•  They defined a substitution matrix as 1 PAM
(point accepted mutation) if the expected number
of substitutions was 1% of the sequence length.

Armstrong, 2010

PAM Matrices

 To increase the distance, they multiplied the
the PAM1 matrix.

 PAM250 is one of the most commonly
used.

Armstrong, 2010

PAM - notes

 The PAM matrices are rooted in the original
datasets used to create the theoretical trees

 They work well with closely related sequences

 Based on data where substitutions are most likely
to occur from single base changes in codons.

Armstrong, 2010

PAM - notes

 Biased towards conservative mutations in the DNA
sequence (rather than amino acid substitutions) that
have little effect on function/structure.

 Replacement at any site in the sequence depends
only on the amino acid at that site and the
probability given by the table.This does not
represent evolutionary processes correctly. Distantly
related sequences usually have regions of high
conservation (blocks).

Armstrong, 2010

PAM - notes

 36 residue pairs were not observed in the dataset
used to create the original PAM matrix

 A new version of PAM was created in 1992 using
59190 substitutions: Jones, Taylor and Thornton
1992 CAMBIOS 8 pp 275

Armstrong, 2010

BLOSUM matrices

 Henikoff and Henikoff 1991

 Took sets of aligned ungapped regions from protein
families from the BLOCKS database.

 The BLOCKS database contain short protein
sequences of high similarity clustered together.
These are found by applying the MOTIF algorithm
to the SWISS-PROT and other databases. The
current release has 8656 Blocks.

6

Armstrong, 2010

BLOSUM matrices

 Sequences were clustered whenever the %identify
exceeded some percentage level.

 Calculated the frequency of any two residues being
aligned in one cluster also being aligned in another

 Correcting for the size of each cluster.

Armstrong, 2010

BLOSUM matrices

 Resulted in the fraction of observed substitutions
between any two residues over all observed
substitutions.

 The resulting matrices are numbered inversely from
the PAM matrices so the BLOSUM50 matrix was
based on clusters of sequence over 50% identity,
and BLOSUM62 where the clusters were at least
62% identical.

Armstrong, 2010

BLOSUM 62 Matrix

Armstrong, 2010

Summary so far…

•  Gaps
–  Indel operations
– Gap scoring methods

•  Substitution matrices
– DNA largely simple matrices
– Protein matrices are based on probability
– PAM and BLOSUM

Armstrong, 2010

How do we do it?

•  Like everything else there are several
methods and choices of parameters

•  The choice depends on the question being
asked
– What kind of alignment?
– Which substitution matrix is appropriate?
– What gap-penalty rules are appropriate?
–  Is a heuristic method good enough?

Armstrong, 2010

Working Parameters
•  For proteins, using the affine gap penalty

rule and a substitution matrix:
Query Length Matrix Gap (open/extend)

<35 PAM-30 9,1
35-50 PAM-70 10,1
50-85 BLOSUM-80 10,1
>85 BLOSUM-62 11,1

7

Armstrong, 2010

Alignment Types

•  Global: used to compare to similar sized
sequences.

•  Local: used to find similar subsequences.

•  Ends Free: used to find joins/overlaps.

Armstrong, 2010

Global Alignment

•  Two sequences of similar length
•  Finds the best alignment of the two

sequences
•  Finds the score of that alignment
•  Includes ALL bases from both sequences in

the alignment and the score.

•  Needleman-Wunsch algorithm

Armstrong, 2010

Needleman-Wunsch algorithm

•  Gaps are inserted into, or at the ends of each
sequence.

•  The sequence length (bases+gaps) are
identical for each sequence

•  Every base or gap in each sequence is
aligned with a base or a gap in the other
sequence

Armstrong, 2010

Needleman-Wunsch algorithm

•  Consider 2 sequences S and T
•  Sequence S has n elements
•  Sequence T has m elements
•  Gap penalty ?

Armstrong, 2010

How do we score gaps?

ACCGGTATCC---GAC
||| |||| |||

ACC--TATCTTAGGAC
•  Constant: Length independent weight
•  Affine: Open and Extend weights.
•  Convex: Each additional gap contributes less
•  Arbitrary: Some arbitrary function on length

– Lets score each gap as –1 times length

Armstrong, 2010

Needleman-Wunsch algorithm

•  Consider 2 sequences S and T
•  Sequence S has n elements
•  Sequence T has m elements
•  Gap penalty –1 per base (arbitrary gap penalty)
•  An alignment between base i in S and a gap in T is

represented: (Si,-)
•  The score for this is represented : σ(Si,-) = -1

8

Armstrong, 2010

Needleman-Wunsch algorithm

•  Substitution/Match matrix for a simple alignment
•  Several models based on probability….

A C G T
A 2 -1 -1 -1
C -1 2 -1 -1
G -1 -1 2 -1
T -1 -1 -1 2

Armstrong, 2010

Needleman-Wunsch algorithm

•  Substitution/Match matrix for a simple alignment
•  Simple identify matrix (2 for match, -1 for

mismatch)
•  An alignment between base i in S and base j in T is

represented: (Si,Tj)
•  The score for this occurring is represented: σ(Si,Tj)

Armstrong, 2010

Needleman-Wunsch algorithm

•  Set up a array V of size n+1 by m+1
•  Row 0 and Column 0 represent the cost of adding

gaps to either sequence at the start of the
alignment

•  Calculate the rest of the cells row by row by
finding the optimal route from the surrounding
cells that represent a gap or match/mismatch
–  This is easier to demonstrate than to explain

Armstrong, 2010

Needleman-Wunsch algorithm

–  lets start by trying out a simple example
alignment:

S = ACCGGTAT
T = ACCTATC

Armstrong, 2010

Needleman-Wunsch algorithm

–  Get lengths

S = ACCGGTAT
T = ACCTATC

Length of S = m = 8
Length of T = n = 7

 (lengths approx equal so OK for Global Alignment)

Armstrong, 2010

Create array m+1 by n+1
(i.e. 9 by 8)

9

Armstrong, 2010

Add on bases from each sequence
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

Armstrong, 2010

Represent scores for gaps in row/
col 0

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-2

Armstrong, 2010

Represent scores for gaps in row/
col 0

-7
-6
-5
-4
-3
-2
-1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2

Armstrong, 2010

For each cell consider the ‘best’
path

-7
-6
-5
-4
-3
-2
-1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2

Armstrong, 2010

For each cell consider the ‘best’
path

-1
-1 0

 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-3 -2

(S1,T0) & σ(-,T1) = -1
Running total (-1+-1)=-2

Armstrong, 2010

For each cell consider the ‘best’
path

-1
-1 0

 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-3 -2

(S1,T0) & σ(-,T1) = -1
Running total (-1+-1)=-2

(S0, T1) & σ(S1,-) = -1
Running total (-1+-1)=-2

10

Armstrong, 2010

For each cell consider the ‘best’
path

-1
-1 0

 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-3 -2

(S1,T0) & σ(-,T1) = -1
Running total (-1+-1)=-2

(S0, T1) & σ(S1,-) = -1
Running total (-1+-1)=-2

(S0,T0) & σ(S1,T1) = 2
Running total (0+2)=2

Armstrong, 2010

Choose and record ‘best’ path

2 -1
-1 0

 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-3 -2

Armstrong, 2010

Choose and record ‘best’ path

2 -1
-1 0

 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-3 -2

(S2,T0) & σ(-,T1)
Running total (-2+-1)=-3

(S1,T1) & σ(S2,-)
Running total (2+-1)=1

(S1,T0) & σ(S2,T1)
Running total (-1+-1)=-2

1

Armstrong, 2010

Continue….

-7
-6
-5
-4
-3
-2

1 2 -1
-1 0

 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

Armstrong, 2010

Continue….

-7
-6
-5
-4
-3

-2 -1 0 1 -2
-5 1 2 -1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

1 4 3 2

Armstrong, 2010

Continue….

-7
-6
-5
-4

1 2 3 4 5 6 3 -3
-2 -1 0 1 -2
-5 1 2 -1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

1 4 3 2
0

11

Armstrong, 2010

Continue….

-7
-6
-5

4 5 6 4 4 5 2 -1 -4
1 2 3 4 5 6 3 -3
-2 -1 0 1 -2
-5 1 2 -1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2010

Continue….

-7
-6

7 8 5 3 4 4 1 -2 -5
4 5 6 4 4 5 2 -1 -4
1 2 3 4 5 6 3 -3
-2 -1 0 1 -2
-5 1 2 -1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2010

Continue….

-7
10 7 5 3 3 3 0 -3 -6
7 8 5 3 4 4 1 -2 -5
4 5 6 4 4 5 2 -1 -4
1 2 3 4 5 6 3 -3
-2 -1 0 1 -2
-5 1 2 -1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2010

Finally.

9 6 4 2 2 2 -1 -4 -7
10 7 5 3 3 3 0 -3 -6
7 8 5 3 4 4 1 -2 -5
4 5 6 4 4 5 2 -1 -4
1 2 3 4 5 6 3 -3
-2 -1 0 1 -2
-5 1 2 -1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

1 4 3 2
0

= Score

Armstrong, 2010

Finally.

9 6 4 2 2 2 -1 -4 -7
10 7 5 3 3 3 0 -3 -6
7 8 5 3 4 4 1 -2 -5
4 5 6 4 4 5 2 -1 -4
1 2 3 4 5 6 3 -3
-2 -1 0 1 -2
-5 1 2 -1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2010

We recreate the alignment using by following the
pointers back through the array to the origin

9 6 4 2 2 2 -1 -4 -7
10 7 5 3 3 3 0 -3 -6
7 8 5 3 4 4 1 -2 -5
4 5 6 4 4 5 2 -1 -4
1 2 3 4 5 6 3 -3
-2 -1 0 1 -2
-5 1 2 -1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

1 4 3 2
0

12

Armstrong, 2010

9 6 4 2 2 2 -1 -4 -7
10 7 5 3 3 3 0 -3 -6
7 8 5 3 4 4 1 -2 -5
4 5 6 4 4 5 2 -1 -4
1 2 3 4 5 6 3 -3
-2 -1 0 1 -2
-5 1 2 -1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

1 4 3 2
0

 - (S)

 C (T)

Armstrong, 2010

 T- (S)
 |
 TC (T)

9 6 4 2 2 2 -1 -4 -7
10 7 5 3 3 3 0 -3 -6
7 8 5 3 4 4 1 -2 -5
4 5 6 4 4 5 2 -1 -4
1 2 3 4 5 6 3 -3
-2 -1 0 1 -2
-5 1 2 -1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2010

 AT- (S)
 ||
 ATC (T)

9 6 4 2 2 2 -1 -4 -7
10 7 5 3 3 3 0 -3 -6
7 8 5 3 4 4 1 -2 -5
4 5 6 4 4 5 2 -1 -4
1 2 3 4 5 6 3 -3
-2 -1 0 1 -2
-5 1 2 -1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2010

 TAT- (S)
 |||
 TATC (T)

9 6 4 2 2 2 -1 -4 -7
10 7 5 3 3 3 0 -3 -6
7 8 5 3 4 4 1 -2 -5
4 5 6 4 4 5 2 -1 -4
1 2 3 4 5 6 3 -3
-2 -1 0 1 -2
-5 1 2 -1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2010

 GTAT- (S)
 |||
 -TATC (T)

9 6 4 2 2 2 -1 -4 -7
10 7 5 3 3 3 0 -3 -6
7 8 5 3 4 4 1 -2 -5
4 5 6 4 4 5 2 -1 -4
1 2 3 4 5 6 3 -3
-2 -1 0 1 -2
-5 1 2 -1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2010

 GGTAT- (S)
 |||
 --TATC (T)

9 6 4 2 2 2 -1 -4 -7
10 7 5 3 3 3 0 -3 -6
7 8 5 3 4 4 1 -2 -5
4 5 6 4 4 5 2 -1 -4
1 2 3 4 5 6 3 -3
-2 -1 0 1 -2
-5 1 2 -1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

1 4 3 2
0

13

Armstrong, 2010

 CGGTAT- (S)
 | |||
 C--TATC (T)

9 6 4 2 2 2 -1 -4 -7
10 7 5 3 3 3 0 -3 -6
7 8 5 3 4 4 1 -2 -5
4 5 6 4 4 5 2 -1 -4
1 2 3 4 5 6 3 -3
-2 -1 0 1 -2
-5 1 2 -1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2010

 CCGGTAT- (S)
 || |||
 CC--TATC (T)

9 6 4 2 2 2 -1 -4 -7
10 7 5 3 3 3 0 -3 -6
7 8 5 3 4 4 1 -2 -5
4 5 6 4 4 5 2 -1 -4
1 2 3 4 5 6 3 -3
-2 -1 0 1 -2
-5 1 2 -1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2010

 ACCGGTAT- (S)
 ||| |||
 ACC--TATC (T)

9 6 4 2 2 2 -1 -4 -7
10 7 5 3 3 3 0 -3 -6
7 8 5 3 4 4 1 -2 -5
4 5 6 4 4 5 2 -1 -4
1 2 3 4 5 6 3 -3
-2 -1 0 1 -2
-5 1 2 -1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2010

Checking the result

•  Our alignment considers ALL bases in each
sequence

•  6 matches = 12 points, 3 gaps = -3 points
•  Score = 9 confirmed.

 ACCGGTAT- (S)
 ||| |||
 ACC--TATC (T)

Armstrong, 2010

A bit more formally..
Base conditions: V(i,0) = σ(Sk,-)

V(0,j) = σ(-,Tk) ∑

∑
i

j

k=0

k=0

Recurrence relation: for 1<=i <= n, 1<=j<=m:

V(i,j) = max {

V(i-1,j-1) + σ(Si,Tj)
V(i-1,j) + σ(Si,-)
V(i,j-1) + σ(-,Tj)

Armstrong, 2010

Time Complexity

•  Each cell is dependant on three others and
the two relevant characters in each sequence

•  Hence each cell takes a constant time
•  (n+1) x (m+1) cells

•  Complexity is therefore O(nm)

14

Armstrong, 2010

Space Complexity

•  To calculate each row we need the current row
and the row above only.

•  Therefore to get the score, we need O(n+m) space

•  However, if we need the pointers as well, this
increases to O(nm) space

•  This is a problem for very long sequences
–  think about the size of whole genomes

Armstrong, 2010

Global alignment in linear space

•  Hirschberg 1977 applied a ‘divide and
conquer’ algorithm to Global Alignment to
solve the problem in linear space.

•  Divide the problem into small manageable
chunks

•  The clever bit is finding the chunks

Armstrong, 2010

dividing...
Compute matrix V(A,B) saving the values for n/2

th row
 - call this matrix F

Compute matrix V(Ar,Br) saving the values for n/2
th row

 - call this matrix B
Find column k so that the crossing point (n/2,k) satisfies:

 F(n/2,k) + B(n/2,m-k) = F(n,m)

Now we have two much smaller problems:
(0,0) -> (n/2,k) and (n,m) -> (n/2,m-k)

Armstrong, 2010

Hirschberg’s divide and conquer
approach (0,0)

(m,n)

n/2

Armstrong, 2010

Complexity

•  After applying Hirschberg’s divide and conquer approach
we get the following:

–  Complexity O(mn)

–  Space O(min(m,n))

•  For the proofs, see D.S. Hirschberg. (1977) Algorithms for
the longest common subsequence problem. J. A.C.M 24:
664-667

Armstrong, 2010

OK where are we?

•  The Needleman-Wunsch algorithm finds the
optimum alignment and the best score.
– NW is a dynamic programming algorithm

•  Space complexity is a problem with NW
•  Addressed by a divide and conquer

algorithm
•  What about local and ends-free alignments?

15

Armstrong, 2010

Smith-Waterman algorithm

•  Between two sequences, find the best two
subsequences and their score.

•  We want to ignore badly matched sequence
•  Use the same types of substitution matrix

and gap penalties
•  Use a modification of the previous dynamic

programming approach.

Armstrong, 2010

Smith-Waterman algorithm

•  If Si matches Tj then σ(Si,Tj) >=0
•  If they do not match or represent a gap then <=0

•  Lowest allowable value of any cell is 0
•  Find the cell with the highest value (i,j) and extend

the alignment back to the first zero value
•  The score of the alignment is the value in that cell
•  A quick example if best...

Armstrong, 2010

min value of any cell is 0

0
0
0
0
0
0
0

0 0 0 0 0 0 0 0 0
 A C C G G T A T (S)

T

T

G

T

A

T

C

(T)

Armstrong, 2010

min value of any cell is 0

0
0
0
0
0

3 1 2 0 0 0 0 0 0
2 1 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 A C C G G T A T (S)

T

T

G

T

A

T

C

(T)

Armstrong, 2010

min value of any cell is 0

7 4 1 2 3 4 3 0 0
8 5 2 0 0 0 1 1 0
5 6 3 0 0 0 1 2 0
3 3 4 1 1 0 0 0 0
2 1 1 2 2 0 0 0 0
3 1 2 0 0 0 0 0 0
2 1 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 A C C G G T A T (S)

T

T

G

T

A

T

C

(T)

Armstrong, 2010

Find biggest cell and map alignment
from there

7 4 1 2 3 4 3 0 0
8 5 2 0 0 0 1 1 0
5 6 3 0 0 0 1 2 0
3 3 4 1 1 0 0 0 0
2 1 1 2 2 0 0 0 0
3 1 2 0 0 0 0 0 0
2 1 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 A C C G G T A T (S)

T

T

G

T

A

T

C

(T)

16

Armstrong, 2010

GTAT(S)
||||
GTAT(T)

7 4 1 2 3 4 3 0 0
8 5 2 0 0 0 1 1 0
5 6 3 0 0 0 1 2 0
3 3 4 1 1 0 0 0 0
2 1 1 2 2 0 0 0 0
3 1 2 0 0 0 0 0 0
2 1 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 A C C G G T A T (S)

T

T

G

T

A

T

C

(T)

Armstrong, 2010

Smith-Waterman cont’d

•  Complexity
–  Time is O(nm) as in global alignments
–  Space is O(nm) as in global alignments

–  A mod of Hirschbergs algorithm allows O(n+m) (n
+m) as two rows need to be stored at a time instead of
one as in the global alignment.

Armstrong, 2010

A bit more formally..
Base conditions: ∀i,j. V(i,0) = 0, V(0,j) = 0

Recurrence relation: for 1<=i <= n, 1<=j<=m:

V(i,j) = max {

0
V(i-1,j-1) + σ(Si,Tj)
V(i-1,j) + σ(Si,-)
V(i,j-1) + σ(-,Tj)

Compute i* and j* V(i *,j *) = max 1<=i<=n,1<=j<=m V(i,j)

Armstrong, 2010

Ends-free alignment

•  Find the overlap between two sequences such start
the start of one overlaps is in the alignment and
the end of the other is in the alignment.

•  Essential to DNA sequencing strategies.
–  Building genome fragments out of shorter sequencing

data.
•  Another variant of the Global Alignment Problem

Armstrong, 2010

Ends-free alignment

•  Set the initial conditions to zero weight
–  allow indels/gaps at the ends without penalty

•  Fill the array/table using the same recursion
model used in global/local alignment

•  Find the best alignment that ends in one row
or column
–  trace this back

Armstrong, 2010

min value row0 & col0 is 0

5 5 5 6 4 4 1 0 0
6 5 6 4 4 5 2 -1 0
7 4 3 4 5 3 3 0 0
8 5 2 1 2 3 4 1 0
5 6 3 0 0 0 1 2 0
2 3 4 1 0 1 1 -1 0
-1 0 1 2 -1 -1 -1 -1 0
0 0 0 0 0 0 0 0 0

 G T T A C T G T (S)

C

T

G

T

A

T

C

(T)

17

Armstrong, 2010

Find the best ‘end’ point in an end col or
row

5 5 5 6 4 4 1 0 0
6 5 6 4 4 5 2 -1 0
7 4 3 4 5 3 3 0 0
8 5 2 1 2 3 4 1 0
5 6 3 0 0 0 1 2 0
2 3 4 1 0 1 1 -1 0
-1 0 1 2 -1 -1 -1 -1 0
0 0 0 0 0 0 0 0 0

 G T T A C T G T (S)

C

T

G

T

A

T

C

(T)

Armstrong, 2010

Trace the best route from there to the
origin and end

5 5 5 6 4 4 1 0 0
6 5 6 4 4 5 2 -1 0
7 4 3 4 5 3 3 0 0
8 5 2 1 2 3 4 1 0
5 6 3 0 0 0 1 2 0
2 3 4 1 0 1 1 -1 0
-1 0 1 2 -1 -1 -1 -1 0
0 0 0 0 0 0 0 0 0

 G T T A C T G T (S)

C

T

G

T

A

T

C

(T)

Armstrong, 2010

GTTACTGT---(S)
 ||||
----CTGTATC(T)

5 5 5 6 4 4 1 0 0
6 5 6 4 4 5 2 -1 0
7 4 3 4 5 3 3 0 0
8 5 2 1 2 3 4 1 0
5 6 3 0 0 0 1 2 0
2 3 4 1 0 1 1 -1 0
-1 0 1 2 -1 -1 -1 -1 0
0 0 0 0 0 0 0 0 0

 G T T A C T G T (S)

C

T

G

T

A

T

C

(T)

Armstrong, 2010

A bit more formally..
Base conditions: ∀i,j. V(i,0) = 0, V(0,j) = 0

Recurrence relation: for 1<=i <= n, 1<=j<=m:

V(i,j) = max {

V(i-1,j-1) + σ(Si,Tj)
V(i-1,j) + σ(Si,-)
V(i,j-1) + σ(-,Tj)

Search for i* such that: V(i*,m)=max1<=i<=n,m V(i,j)
Search for j* such that: V(n,j*)=max1<=j<=n,m V(i,j)

Define alignment score V(S,T) = max { V(n,j*)
V(i*,m)

Armstrong, 2010

Summary so far...

•  Dynamic programming algorithms can
solve global, local and ends-free alignment

•  They give the optimum score and alignment
using the parameters given

•  Divide and conquer approaches make the
space complexity manageable for small-
medium sized sequences

Armstrong, 2010

Dynamic Programming Issues

•  For huge sequences, even linear space constraints
are a problem.

•  We used a very simple gap penalty
•  The Affine Gap penalty is most commonly used.

–  Cost to open a gap
–  Cost to extend an open gap

•  Need to track and evaluate the ‘gap’ state in the
array

18

Armstrong, 2010

Tracking the gap state

•  We can model the matches and gap
insertions as a finite state machine:

Taken from Durbin, chapter 2.4

Armstrong, 2010

Tracking the gap state

•  Working along the alignment process...

Taken from Durbin, chapter 2.4

Armstrong, 2010

•  When searching multiple genomes, the sizes still
get too big!

•  Several approaches have been tried:
•  Use huge parallel hardware:

–  Distribute the problem over many CPUs
–  Very expensive

•  Implement in Hardware
–  Cost of specialist boards is high
–  Has been done for Smith-Waterman on SUN

Real Life Sequence Alignment

Armstrong, 2010

•  Use a Heuristic Method
– Faster than ‘exact’ algorithms
– Give an approximate solution
– Software based therefore cheap

•  Based on a number of assumptions:

Real Life Sequence Alignment

Armstrong, 2010

Assumptions for Heuristic
Approaches

•  Even linear time complexity is a problem
for large genomes

•  Databases can often be pre-processed to a
degree

•  Substitutions more likely than gaps
•  Homologous sequences contain a lot of

substitutions without gaps which can be
used to help find start points in alignments

Armstrong, 2010

Conclusions

•  Dynamic programming algorithms are
expensive but they give you the optimum
alignment and exact score

•  Choice of GAP penalty and substitution
matrix are critically important

•  Heuristic approaches are generally required
for high throughput or very large alignments

