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Sequence Alignment 

Armstrong, 2010 

Why? 

•  Genome sequencing gives us new gene 
sequences 

•  Network biology gives us functional 
information on genes/proteins 

•  Analysis of mutants links unknown genes to 
diseases 

•  Can we learn anything from other known 
sequences about our new gene/protein? 

Armstrong, 2010 Armstrong, 2010 

What is it? 

ACCGGTATCCTAGGAC 

ACCTATCTTAGGAC 

Are these two sequences related? 
How similar (or dissimilar) are they? 
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What is it? 

ACCGGTATCCTAGGAC 

|||  |||| |||||| 

ACC--TATCTTAGGAC 

•  Match the two sequences as closely as possible = 
aligned 

•  Therefore, alignments need a score 

Armstrong, 2010 

Why do we care? 

•  DNA and Proteins are based on linear sequences 
•  Information is encoded in these sequences 
•  All bioinformatics at some level comes back to 

matching sequences that might have some noise or 
variability  
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Alignment Types 

•  Global: used to compare to similar sized 
sequences.  
– Compare closely related genes 
– Search for mutations or polymorphisms 

in a sequence compared to a reference. 
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Alignment Types 

•  Local: used to find shared subsequences.  
– Search for protein domains 
– Find gene regulatory elements 
– Locate a similar gene in a genome 

sequence. 
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Alignment Types 

•  Ends Free: used to find joins/overlaps.  
– Align the sequences from adjacent 

sequencing primers. 
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How do we score alignments? 

ACCGGTATCCTAGGAC 
|||  |||| |||||| 

ACC--TATCTTAGGAC 
•  Assign a score for each match along the 

sequence. 
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How do we score alignments? 

ACCGGTATCCTAGGAC 
|||  |||| |||||| 

ACC--TATCTTAGGAC 
•  Assign a score (or penalty) for each 

substitution. 
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How do we score alignments? 

ACCGGTATCCTAGGAC 
|||  |||| |||||| 

ACC--TATCTTAGGAC 
•  Assign a score (or penalty) for each 

insertion or deletion. 
•  insertions/deletions otherwise known as 

indels 
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How do we score alignments? 

ACCGGTATCCTAGGAC 
|||  |||| |||||| 

ACC--TATCTTAGGAC 

•  Matches and substitutions are ‘easy’ to deal 
with. 
– We’ll look at substitution matrices later. 

•  How do we score indels: gaps? 
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How do we score gaps? 

ACCGGTATCC---GAC 
|||  ||||    ||| 

ACC--TATCTTAGGAC 

•  A gap is a consecutive run of indels 
•  The gap length is the number of indels. 
•  The simple example here has two gaps of 

length 2 and 3 
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How do we score gaps? 

ACCGGTATCC---GAC 
|||  ||||    ||| 

ACC--TATCTTAGGAC 
•  Constant:  Length independent weight 
•  Affine:   Open and Extend weights. 
•  Convex:   Each additional gap contributes less 
•  Arbitrary: Some arbitrary function on length 

Armstrong, 2010 

Choosing Gap Penalties 

•  The choice of Gap Scoring Penalty is very 
sensitive to the context in which it is 
applied: 
–  introns vs exons 
–  protein coding regions 
– mis-matches in PCR primers 
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Substitution Matrices 

•  Substitution matrices are used to score 
substitution events in alignments. 

•  Particularly important in Protein sequence 
alignments but relevant to DNA sequences 
as well. 

•  Each scoring matrix represents a particular 
theory of evolution 
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Similarity/Distance 

•  Distance is a measure of the cost or 
replacing one residue with another. 

•  Similarity is a measure of how similar a 
replacement is. 

e.g. replacing a hydrophobic residue with a hydrophilic one. 

•  The logic behind both are the same and the 
scoring matrices are interchangeable. 
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DNA Matrices 
Identity matrix    BLAST 
     A C G T    A  C  G  T  
A 1 0 0 0      A  5 –4 –4 -4  
C 0 1 0 0      C –4  5 –4 -4  
G 0 0 1 0      G –4 –4  5 -4  
T 0 0 0 1      T  -4 –4 –4 5 


However, some changes are more likely to occur than others (even in 
DNA). When looking at distance, the ease of mutation is a factor. a.g. 
A-T and A-C replacements are rarer than A-G or C-T. 
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Protein Substitution Matrices 

 How can we score a substitution in an aligned 
sequence? 

•  Identity matrix like the simple DNA one.  
•  Genetic Code Matrix:  

 For this, the score is based upon the minimum number of 
DNA base changes required to convert one amino acid into 
the other.  

Armstrong, 2010 Armstrong, 2010 

Protein Substitution Matrices 

 How can we score a substitution in an aligned 
sequence? 

•  Amino acid property matrix 
 Assign arbitrary values to the relatedness of different 
amino acids: 
 e.g. hydrophobicity , charge, pH, shape, size 

Armstrong, 2010 

Matrices based on Probability 

 Sij = log (qij/pipj) 

 Sij is the log odds ratio of two probabilities: amino 
acids i and j are aligned by evolutionary descent 
and the probability that they aligned at random. 

 This is the basis for commonly used substitution 
matrices. 

Armstrong, 2010 

PAM matrices 

 Dayhoff, Schwarz and Orcutt 1978 took these into 
consideration when constructing the PAM 
matrices: 
 Took 71 protein families - where the sequences 
differed by no more than 15% of residues (i.e. 
85% identical) 
  Aligned these proteins 
  Build a theoretical phylogenetic tree 
  Predicted the most likely residues in the  

 ancestral sequence 
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PAM Matrices 

•  Ignore evolutionary direction 
•  Obtained frequencies for residue X  being 

substituted by residue Y over time period Z 

•  Based on 1572 residue changes  

•  They defined a substitution matrix as 1 PAM 
(point accepted mutation) if the expected number 
of substitutions was 1% of the sequence length.  

Armstrong, 2010 

PAM Matrices 

 To increase the distance, they multiplied the 
the PAM1 matrix. 

 PAM250 is one of the most commonly 
used.  

Armstrong, 2010 

PAM - notes 

 The PAM matrices are rooted in the original 
datasets used to create the theoretical trees 

 They work well with closely related sequences 

 Based on data where substitutions are most likely 
to occur from single base changes in codons. 
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PAM - notes 

 Biased towards conservative mutations in the DNA 
sequence (rather than amino acid substitutions) that 
have little effect on function/structure. 

 Replacement at any site in the sequence depends 
only on the amino acid at that site and the 
probability given by the table.This does not 
represent evolutionary processes correctly. Distantly 
related sequences usually have regions of high 
conservation (blocks).  
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PAM - notes 

 36 residue pairs were not observed in the dataset 
used to create the original PAM matrix 

 A new version of PAM was created in 1992 using 
59190 substitutions: Jones, Taylor and Thornton 
1992 CAMBIOS 8 pp 275 

Armstrong, 2010 

BLOSUM matrices 

  Henikoff and Henikoff 1991 

 Took sets of aligned ungapped regions from protein 
families from the BLOCKS database. 

 The BLOCKS database contain short protein 
sequences of high similarity clustered together. 
These are found by applying the MOTIF algorithm 
to the SWISS-PROT and other databases. The 
current release has 8656 Blocks.  
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BLOSUM matrices 

  Sequences were clustered whenever the %identify 
exceeded some percentage level. 

 Calculated the frequency of any two residues being 
aligned in one cluster also being aligned in another 

   
 Correcting for the size of each cluster. 

Armstrong, 2010 

BLOSUM matrices 

 Resulted in the fraction of observed substitutions 
between any two residues over all observed 
substitutions. 

 The resulting matrices are numbered inversely from 
the PAM matrices so the BLOSUM50 matrix was 
based on clusters of sequence over 50% identity, 
and BLOSUM62 where the clusters were at least 
62% identical.  

Armstrong, 2010 

BLOSUM 62 Matrix 

Armstrong, 2010 

Summary so far… 

•  Gaps  
–  Indel operations 
– Gap scoring methods 

•  Substitution matrices 
– DNA largely simple matrices 
– Protein matrices are based on probability 
– PAM and BLOSUM 
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How do we do it? 

•  Like everything else there are several 
methods and choices of parameters 

•  The choice depends on the question being 
asked 
– What kind of alignment? 
– Which substitution matrix is appropriate? 
– What gap-penalty rules are appropriate? 
–  Is a heuristic method good enough? 

Armstrong, 2010 

Working Parameters 
•  For proteins, using the affine gap penalty 

rule and a substitution matrix: 
Query Length   Matrix  Gap (open/extend) 

<35   PAM-30  9,1 
35-50   PAM-70  10,1 
50-85   BLOSUM-80  10,1   
>85   BLOSUM-62  11,1 
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Alignment Types 

•  Global: used to compare to similar sized 
sequences. 

•  Local: used to find similar subsequences.  

•  Ends Free: used to find joins/overlaps. 

Armstrong, 2010 

Global Alignment 

•  Two sequences of similar length 
•  Finds the best alignment of the two 

sequences 
•  Finds the score of that alignment 
•  Includes ALL bases from both sequences in 

the alignment and the score. 

•  Needleman-Wunsch algorithm 

Armstrong, 2010 

Needleman-Wunsch algorithm 

•  Gaps are inserted into, or at the ends of each 
sequence. 

•  The sequence length (bases+gaps) are 
identical for each sequence 

•  Every base or gap in each sequence is 
aligned with a base or a gap in the other 
sequence  

Armstrong, 2010 

Needleman-Wunsch algorithm 

•  Consider 2 sequences S and T 
•  Sequence S has n elements 
•  Sequence T has m elements 
•  Gap penalty ? 

Armstrong, 2010 

How do we score gaps? 

ACCGGTATCC---GAC 
|||  ||||    ||| 

ACC--TATCTTAGGAC 
•  Constant:  Length independent weight 
•  Affine:  Open and Extend weights. 
•  Convex:  Each additional gap contributes less 
•  Arbitrary: Some arbitrary function on length 

– Lets score each gap as –1 times length 

Armstrong, 2010 

Needleman-Wunsch algorithm 

•  Consider 2 sequences S and T 
•  Sequence S has n elements 
•  Sequence T has m elements 
•  Gap penalty –1 per base (arbitrary gap penalty) 
•  An alignment between base i in S and a gap in T is 

represented:   (Si,-) 
•  The score for this is represented :  σ(Si,-) = -1 
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Needleman-Wunsch algorithm 

•  Substitution/Match matrix for a simple alignment 
•  Several models based on probability…. 

A C G T 
A 2 -1 -1 -1 
C -1 2 -1 -1 
G -1 -1 2 -1 
T -1 -1 -1 2 

Armstrong, 2010 

Needleman-Wunsch algorithm 

•  Substitution/Match matrix for a simple alignment 
•  Simple identify matrix (2 for match, -1 for 

mismatch) 
•  An alignment between base i in S and base j in T is 

represented: (Si,Tj) 
•  The score for this occurring is represented: σ(Si,Tj) 

Armstrong, 2010 

Needleman-Wunsch algorithm 

•  Set up a array V of size n+1 by m+1 
•  Row 0 and Column 0 represent the cost of adding 

gaps to either sequence at the start of the 
alignment 

•  Calculate the rest of the cells row by row by 
finding the optimal route from the surrounding 
cells that represent a gap or match/mismatch 
–  This is easier to demonstrate than to explain 

Armstrong, 2010 

Needleman-Wunsch algorithm 

–  lets start by trying out a simple example 
alignment: 

S = ACCGGTAT 
T =  ACCTATC 

Armstrong, 2010 

Needleman-Wunsch algorithm 

–  Get lengths 

S = ACCGGTAT 
T =  ACCTATC 

Length of S = m = 8 
Length of T = n = 7 

 (lengths approx equal so OK for Global Alignment) 

Armstrong, 2010 

Create array m+1 by n+1 
(i.e. 9 by 8) 
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Add on bases from each sequence 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

Armstrong, 2010 

Represent scores for gaps in row/
col 0 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-2 

Armstrong, 2010 

Represent scores for gaps in row/
col 0 

-7 
-6 
-5 
-4 
-3 
-2 
-1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 

Armstrong, 2010 

For each cell consider the ‘best’ 
path 

-7 
-6 
-5 
-4 
-3 
-2 
-1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 

Armstrong, 2010 

For each cell consider the ‘best’ 
path 

-1 
-1 0 

          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-3 -2 

(S1,T0) &  σ(-,T1) = -1 
Running total (-1+-1)=-2 

Armstrong, 2010 

For each cell consider the ‘best’ 
path 

-1 
-1 0 

          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-3 -2 

(S1,T0) &  σ(-,T1) = -1 
Running total (-1+-1)=-2 

(S0, T1) &  σ(S1,-) = -1 
Running total (-1+-1)=-2 



10 

Armstrong, 2010 

For each cell consider the ‘best’ 
path 

-1 
-1 0 

          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-3 -2 

(S1,T0) &  σ(-,T1) = -1 
Running total (-1+-1)=-2 

(S0, T1) &  σ(S1,-) = -1 
Running total (-1+-1)=-2 

(S0,T0) &  σ(S1,T1) = 2 
Running total (0+2)=2 

Armstrong, 2010 

Choose and record ‘best’ path 

2 -1 
-1 0 

          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-3 -2 

Armstrong, 2010 

Choose and record ‘best’ path 

2 -1 
-1 0 

          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-3 -2 

(S2,T0) &  σ(-,T1) 
Running total (-2+-1)=-3 

(S1,T1) &  σ(S2,-) 
Running total (2+-1)=1 

(S1,T0) &  σ(S2,T1)  
Running total (-1+-1)=-2 

1 
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Continue…. 

-7 
-6 
-5 
-4 
-3 
-2 

1 2 -1 
-1 0 

          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

Armstrong, 2010 

Continue…. 

-7 
-6 
-5 
-4 
-3 

-2 -1 0 1 -2 
-5 1 2 -1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

1 4 3 2 
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Continue…. 

-7 
-6 
-5 
-4 

1 2 3 4 5 6 3 -3 
-2 -1 0 1 -2 
-5 1 2 -1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

1 4 3 2 
0 
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Continue…. 

-7 
-6 
-5 

4 5 6 4 4 5 2 -1 -4 
1 2 3 4 5 6 3 -3 
-2 -1 0 1 -2 
-5 1 2 -1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

1 4 3 2 
0 

Armstrong, 2010 

Continue…. 

-7 
-6 

7 8 5 3 4 4 1 -2 -5 
4 5 6 4 4 5 2 -1 -4 
1 2 3 4 5 6 3 -3 
-2 -1 0 1 -2 
-5 1 2 -1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

1 4 3 2 
0 
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Continue…. 

-7 
10 7 5 3 3 3 0 -3 -6 
7 8 5 3 4 4 1 -2 -5 
4 5 6 4 4 5 2 -1 -4 
1 2 3 4 5 6 3 -3 
-2 -1 0 1 -2 
-5 1 2 -1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

1 4 3 2 
0 

Armstrong, 2010 

Finally. 

9 6 4 2 2 2 -1 -4 -7 
10 7 5 3 3 3 0 -3 -6 
7 8 5 3 4 4 1 -2 -5 
4 5 6 4 4 5 2 -1 -4 
1 2 3 4 5 6 3 -3 
-2 -1 0 1 -2 
-5 1 2 -1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

1 4 3 2 
0 

= Score 

Armstrong, 2010 

Finally. 

9 6 4 2 2 2 -1 -4 -7 
10 7 5 3 3 3 0 -3 -6 
7 8 5 3 4 4 1 -2 -5 
4 5 6 4 4 5 2 -1 -4 
1 2 3 4 5 6 3 -3 
-2 -1 0 1 -2 
-5 1 2 -1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

1 4 3 2 
0 

Armstrong, 2010 

We recreate the alignment using by following the 
pointers back through the array to the origin 

9 6 4 2 2 2 -1 -4 -7 
10 7 5 3 3 3 0 -3 -6 
7 8 5 3 4 4 1 -2 -5 
4 5 6 4 4 5 2 -1 -4 
1 2 3 4 5 6 3 -3 
-2 -1 0 1 -2 
-5 1 2 -1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

1 4 3 2 
0 
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9 6 4 2 2 2 -1 -4 -7 
10 7 5 3 3 3 0 -3 -6 
7 8 5 3 4 4 1 -2 -5 
4 5 6 4 4 5 2 -1 -4 
1 2 3 4 5 6 3 -3 
-2 -1 0 1 -2 
-5 1 2 -1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

1 4 3 2 
0 

                     - (S) 

                     C (T) 

Armstrong, 2010 

                    T- (S) 
                    |     
                    TC (T) 

9 6 4 2 2 2 -1 -4 -7 
10 7 5 3 3 3 0 -3 -6 
7 8 5 3 4 4 1 -2 -5 
4 5 6 4 4 5 2 -1 -4 
1 2 3 4 5 6 3 -3 
-2 -1 0 1 -2 
-5 1 2 -1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

1 4 3 2 
0 

Armstrong, 2010 

                   AT- (S) 
                   ||     
                   ATC (T) 

9 6 4 2 2 2 -1 -4 -7 
10 7 5 3 3 3 0 -3 -6 
7 8 5 3 4 4 1 -2 -5 
4 5 6 4 4 5 2 -1 -4 
1 2 3 4 5 6 3 -3 
-2 -1 0 1 -2 
-5 1 2 -1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

1 4 3 2 
0 

Armstrong, 2010 

                  TAT- (S) 
                  |||     
                  TATC (T) 

9 6 4 2 2 2 -1 -4 -7 
10 7 5 3 3 3 0 -3 -6 
7 8 5 3 4 4 1 -2 -5 
4 5 6 4 4 5 2 -1 -4 
1 2 3 4 5 6 3 -3 
-2 -1 0 1 -2 
-5 1 2 -1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

1 4 3 2 
0 

Armstrong, 2010 

                 GTAT- (S) 
                  |||     
                 -TATC (T) 

9 6 4 2 2 2 -1 -4 -7 
10 7 5 3 3 3 0 -3 -6 
7 8 5 3 4 4 1 -2 -5 
4 5 6 4 4 5 2 -1 -4 
1 2 3 4 5 6 3 -3 
-2 -1 0 1 -2 
-5 1 2 -1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

1 4 3 2 
0 

Armstrong, 2010 

                GGTAT- (S) 
                  |||     
                --TATC (T) 

9 6 4 2 2 2 -1 -4 -7 
10 7 5 3 3 3 0 -3 -6 
7 8 5 3 4 4 1 -2 -5 
4 5 6 4 4 5 2 -1 -4 
1 2 3 4 5 6 3 -3 
-2 -1 0 1 -2 
-5 1 2 -1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

1 4 3 2 
0 
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               CGGTAT- (S) 
               |  |||     
               C--TATC (T) 

9 6 4 2 2 2 -1 -4 -7 
10 7 5 3 3 3 0 -3 -6 
7 8 5 3 4 4 1 -2 -5 
4 5 6 4 4 5 2 -1 -4 
1 2 3 4 5 6 3 -3 
-2 -1 0 1 -2 
-5 1 2 -1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

1 4 3 2 
0 

Armstrong, 2010 

              CCGGTAT- (S) 
              ||  |||     
              CC--TATC (T) 

9 6 4 2 2 2 -1 -4 -7 
10 7 5 3 3 3 0 -3 -6 
7 8 5 3 4 4 1 -2 -5 
4 5 6 4 4 5 2 -1 -4 
1 2 3 4 5 6 3 -3 
-2 -1 0 1 -2 
-5 1 2 -1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

1 4 3 2 
0 

Armstrong, 2010 

             ACCGGTAT- (S) 
             |||  |||     
             ACC--TATC (T) 

9 6 4 2 2 2 -1 -4 -7 
10 7 5 3 3 3 0 -3 -6 
7 8 5 3 4 4 1 -2 -5 
4 5 6 4 4 5 2 -1 -4 
1 2 3 4 5 6 3 -3 
-2 -1 0 1 -2 
-5 1 2 -1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

1 4 3 2 
0 

Armstrong, 2010 

Checking the result 

•  Our alignment considers ALL bases in each 
sequence 

•  6 matches = 12 points, 3 gaps = -3 points 
•  Score = 9 confirmed. 

             ACCGGTAT- (S) 
             |||  |||     
             ACC--TATC (T) 

Armstrong, 2010 

A bit more formally.. 
Base conditions:  V(i,0) =     σ(Sk,-) 

V(0,j) =     σ(-,Tk) ∑ 

∑ 
i 

j 

k=0 

k=0 

Recurrence relation:      for 1<=i <= n, 1<=j<=m: 

V(i,j) = max  { 

V(i-1,j-1) + σ(Si,Tj) 
V(i-1,j) + σ(Si,-) 
V(i,j-1) + σ(-,Tj) 

Armstrong, 2010 

Time Complexity 

•  Each cell is dependant on three others and 
the two relevant characters in each sequence 

•  Hence each cell takes a constant time 
•  (n+1) x (m+1) cells 

•  Complexity is therefore    O(nm) 
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Space Complexity 

•  To calculate each row we need the current row 
and the row above only. 

•  Therefore to get the score, we need O(n+m) space 

•  However, if we need the pointers as well, this 
increases to O(nm) space 

•  This is a problem for very long sequences  
–  think about the size of whole genomes 
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Global alignment in linear space 

•  Hirschberg 1977 applied a ‘divide and 
conquer’ algorithm to Global Alignment to 
solve the problem in linear space. 

•  Divide the problem into small manageable 
chunks 

•  The clever bit is finding the chunks 
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dividing... 
Compute matrix V(A,B) saving the values for n/2

th row 
 - call this matrix F 

Compute matrix V(Ar,Br) saving the values for n/2
th row 

 - call this matrix B 
Find column k so that the crossing point (n/2,k) satisfies: 

 F(n/2,k) + B(n/2,m-k) = F(n,m) 

Now we have two much smaller problems: 
(0,0) -> (n/2,k)  and (n,m) -> (n/2,m-k)  
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Hirschberg’s divide and conquer 
approach (0,0) 

(m,n) 

n/2 
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Complexity 

•  After applying Hirschberg’s divide and conquer approach 
we get the following: 

–  Complexity O(mn) 

–  Space O(min(m,n)) 

•  For the proofs, see D.S. Hirschberg. (1977) Algorithms for 
the longest common subsequence problem. J. A.C.M 24: 
664-667 

Armstrong, 2010 

OK where are we? 

•  The Needleman-Wunsch algorithm finds the 
optimum alignment and the best score. 
– NW is a dynamic programming algorithm 

•  Space complexity is a problem with NW 
•  Addressed by a divide and conquer 

algorithm 
•  What about local and ends-free alignments? 
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Smith-Waterman algorithm 

•  Between two sequences, find the best two 
subsequences and their score. 

•  We want to ignore badly matched sequence 
•  Use the same types of substitution matrix 

and gap penalties 
•  Use a modification of the previous dynamic 

programming approach. 
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Smith-Waterman algorithm 

•  If Si matches Tj then σ(Si,Tj) >=0 
•  If they do not match or represent a gap then <=0 

•  Lowest allowable value of any cell is 0 
•  Find the cell with the highest value (i,j) and extend 

the alignment back to the first zero value 
•  The score of the alignment is the value in that cell 
•  A quick example if best... 
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min value of any cell is 0 

0 
0 
0 
0 
0 
0 
0 

0 0 0 0 0 0 0 0 0 
          A  C  C   G  G  T  A  T  (S) 

T 

T 

G 

T 

A 

T 

C 

(T) 
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min value of any cell is 0 

0 
0 
0 
0 
0 

3 1 2 0 0 0 0 0 0 
2 1 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 

          A  C  C   G  G  T  A  T  (S) 

T 

T 

G 

T 

A 

T 

C 

(T) 
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min value of any cell is 0 

7 4 1 2 3 4 3 0 0 
8 5 2 0 0 0 1 1 0 
5 6 3 0 0 0 1 2 0 
3 3 4 1 1 0 0 0 0 
2 1 1 2 2 0 0 0 0 
3 1 2 0 0 0 0 0 0 
2 1 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 

          A  C  C   G  G  T  A  T  (S) 

T 

T 

G 

T 

A 

T 

C 

(T) 
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Find biggest cell and map alignment 
from there 

7 4 1 2 3 4 3 0 0 
8 5 2 0 0 0 1 1 0 
5 6 3 0 0 0 1 2 0 
3 3 4 1 1 0 0 0 0 
2 1 1 2 2 0 0 0 0 
3 1 2 0 0 0 0 0 0 
2 1 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 

          A  C  C   G  G  T  A  T  (S) 

T 

T 

G 

T 

A 

T 

C 

(T) 
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GTAT(S) 
|||| 
GTAT(T) 

7 4 1 2 3 4 3 0 0 
8 5 2 0 0 0 1 1 0 
5 6 3 0 0 0 1 2 0 
3 3 4 1 1 0 0 0 0 
2 1 1 2 2 0 0 0 0 
3 1 2 0 0 0 0 0 0 
2 1 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 

          A  C  C   G  G  T  A  T  (S) 

T 

T 

G 

T 

A 

T 

C 

(T) 
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Smith-Waterman cont’d 

•  Complexity 
–  Time is O(nm) as in global alignments 
–  Space is O(nm) as in global alignments 

–  A mod of Hirschbergs algorithm allows O(n+m)     (n
+m) as two rows need to be stored at a time instead of 
one as in the global alignment. 
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A bit more formally.. 
Base conditions:  ∀i,j. V(i,0) = 0, V(0,j) = 0 

Recurrence relation:     for 1<=i <= n, 1<=j<=m: 

V(i,j) = max  { 

0 
V(i-1,j-1) + σ(Si,Tj) 
V(i-1,j) + σ(Si,-) 
V(i,j-1) + σ(-,Tj) 

Compute i* and j* V(i *,j *) = max 1<=i<=n,1<=j<=m V(i,j)  
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Ends-free alignment 

•  Find the overlap between two sequences such start 
the start of one overlaps is in the alignment and 
the end of the other is in the alignment. 

•  Essential to DNA sequencing strategies. 
–  Building genome fragments out of shorter sequencing 

data. 
•  Another variant of the Global Alignment Problem 
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Ends-free alignment 

•  Set the initial conditions to zero weight   
–  allow indels/gaps at the ends without penalty 

•  Fill the array/table using the same recursion 
model used in global/local alignment 

•  Find the best alignment that ends in one row 
or column 
–  trace this back 
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min value row0 & col0 is 0 

5 5 5 6 4 4 1 0 0 
6 5 6 4 4 5 2 -1 0 
7 4 3 4 5 3 3 0 0 
8 5 2 1 2 3 4 1 0 
5 6 3 0 0 0 1 2 0 
2 3 4 1 0 1 1 -1 0 
-1 0 1 2 -1 -1 -1 -1 0 
0 0 0 0 0 0 0 0 0 

          G  T  T   A  C  T  G  T  (S) 

C 

T 

G 

T 

A 

T 

C 

(T) 



17 

Armstrong, 2010 

Find the best ‘end’ point in an end col or 
row 

5 5 5 6 4 4 1 0 0 
6 5 6 4 4 5 2 -1 0 
7 4 3 4 5 3 3 0 0 
8 5 2 1 2 3 4 1 0 
5 6 3 0 0 0 1 2 0 
2 3 4 1 0 1 1 -1 0 
-1 0 1 2 -1 -1 -1 -1 0 
0 0 0 0 0 0 0 0 0 

          G  T  T   A  C  T  G  T  (S) 

C 

T 

G 

T 

A 

T 

C 

(T) 
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Trace the best route from there to the 
origin and end 

5 5 5 6 4 4 1 0 0 
6 5 6 4 4 5 2 -1 0 
7 4 3 4 5 3 3 0 0 
8 5 2 1 2 3 4 1 0 
5 6 3 0 0 0 1 2 0 
2 3 4 1 0 1 1 -1 0 
-1 0 1 2 -1 -1 -1 -1 0 
0 0 0 0 0 0 0 0 0 

          G  T  T   A  C  T  G  T  (S) 

C 

T 

G 

T 

A 

T 

C 

(T) 
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GTTACTGT---(S) 
    ||||  
----CTGTATC(T) 

5 5 5 6 4 4 1 0 0 
6 5 6 4 4 5 2 -1 0 
7 4 3 4 5 3 3 0 0 
8 5 2 1 2 3 4 1 0 
5 6 3 0 0 0 1 2 0 
2 3 4 1 0 1 1 -1 0 
-1 0 1 2 -1 -1 -1 -1 0 
0 0 0 0 0 0 0 0 0 

          G  T  T   A  C  T  G  T  (S) 

C 

T 

G 

T 

A 

T 

C 

(T) 
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A bit more formally.. 
Base conditions:  ∀i,j. V(i,0) = 0, V(0,j) = 0 

Recurrence relation:     for 1<=i <= n, 1<=j<=m: 

V(i,j) = max  { 

V(i-1,j-1) + σ(Si,Tj) 
V(i-1,j) + σ(Si,-) 
V(i,j-1) + σ(-,Tj) 

Search for i* such that:  V(i*,m)=max1<=i<=n,m V(i,j) 
Search for j* such that:  V(n,j*)=max1<=j<=n,m V(i,j) 

Define alignment score V(S,T) = max   { V(n,j*) 
V(i*,m) 
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Summary so far... 

•  Dynamic programming algorithms can 
solve global, local and ends-free alignment 

•  They give the optimum score and alignment 
using the parameters given 

•  Divide and conquer approaches make the 
space complexity manageable for small-
medium sized sequences 
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Dynamic Programming Issues 

•  For huge sequences, even linear space constraints 
are a problem. 

•  We used a very simple gap penalty 
•  The Affine Gap penalty is most commonly used. 

–  Cost to open a gap 
–  Cost to extend an open gap 

•  Need to track and evaluate the ‘gap’ state in the 
array 
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Tracking the gap state 

•  We can model the matches and gap 
insertions as a finite state machine: 

Taken from Durbin, chapter 2.4 
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Tracking the gap state 

•  Working along the alignment process... 

Taken from Durbin, chapter 2.4 
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•  When searching multiple genomes, the sizes still 
get too big! 

•  Several approaches have been tried: 
•  Use huge parallel hardware: 

–  Distribute the problem over many CPUs  
–  Very expensive 

•  Implement in Hardware 
–  Cost of specialist boards is high 
–  Has been done for Smith-Waterman on SUN  

Real Life Sequence Alignment 
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•  Use a Heuristic Method 
– Faster than ‘exact’ algorithms 
– Give an approximate solution 
– Software based therefore cheap 

•  Based on a number of assumptions:  

Real Life Sequence Alignment 
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Assumptions for Heuristic 
Approaches 

•  Even linear time complexity is a problem 
for large genomes 

•  Databases can often be pre-processed to a 
degree 

•  Substitutions more likely than gaps 
•  Homologous sequences contain a lot of 

substitutions without gaps which can be 
used to help find start points in alignments 
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Conclusions 

•  Dynamic programming algorithms are 
expensive but they give you the optimum 
alignment and exact score 

•  Choice of GAP penalty and substitution 
matrix are critically important 

•  Heuristic approaches are generally required 
for high throughput or very large alignments 


