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Modern high throughput technologies in biological science often create lists of interesting
molecules. The challenge is to reconstruct a descriptive model from these lists that reflects the
underlying biological processes as accurately as possible. Once we have such a model or network,
what can we learn from it? Specifically, given that we are interested in some biological process
associated with the model, what new properties can we predict and subsequently test? Here, we
describe, at an introductory level, a range of bioinformatics techniques that can be systematically
applied to proteomic datasets. When combined, these methods give us a global overview of the
network and the properties of the proteins and their interactions. These properties can then be
used to predict functional pathways within the network and to examine substructure. To illus-
trate the application of these methods, we draw upon our own work concerning a complex of
186 proteins found in neuronal synapses in mammals. The techniques discussed are generally
applicable and could be used to examine lists of proteins involved with the biological response to
electric or magnetic fields.
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1 Membership of the network – proteins
and nodes

Post-genomic biological methods, in particular high
throughput proteomic methods can rapidly identify many
tens to hundreds of molecules from biological specimens.
The focus of this introductory review is to examine how we
take such a list of proteins and test these data for functional
relevance. Our own research has focussed on a set of proteins
forming neurotransmitter receptor complexes in the post-

synaptic densities of mammalian hippocampal neurons. The
composition of this set was identified through immunopre-
cipitation with an N-methyl-D-asparate (NMDA) receptor
subunit abundant in the post-synaptic density of mamma-
lian neurons [1–4].

The NMDA receptor binds to membrane-associated
guanylate kinase proteins (MAGUK) and forms of signalling
complexes known as the NMDA receptor complex (NRC) or
MAGUK-associated signalling complex (MASC) [1, 4]. NRC/
MASC is located in the post-synaptic terminal of synapses
and proteomic studies reveal it contains 186 proteins. These
proteomic studies have been used as a starting point for
bioinformatics studies, of which the approaches are de-
scribed below, to construct a functional model of this com-
plex in synaptic biology and disease.

No matter what technique is used to generate this list we
need to recognise and acknowledge any inherent limitations
[5] that may be present. Common limitations include sensi-

Correspondence: Dr. J. Douglas Armstrong, School of Infor-
matics, University of Edinburgh, 5 Forrest Hill, Edinburgh, EH1
2QL, UK
E-mail: douglas.armstrong@ed.ac.uk
Fax: 144-7075-055-700

Abbreviation: MASC, membrane-associated guanylate kinase
proteins (MAGUK)-associated signalling complex

DOI 10.1002/pmic.200500895

 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com



2 J. D. Armstrong et al. Proteomics 2006, 6, 0000–0000

tivity – can the proteomic separation and identification tech-
niques employed identify proteins present in very low
amounts; cellular diversity – what is the likelihood that all
the cells in the tissue sample contain a complex with the
same protein complement; and contamination – what pro-
teins might be present in the list as a result of methodologi-
cal artefacts? However, proteomic methods are in a state of
rapid development with improving sensitivity and accuracy.
Further, the results of attempts to pull together multiple
proteomic techniques for cross-validation of the protein
component lists are encouraging [6, 7].

2 Functional annotation

Given such a list of proteins, one can actually learn a lot
about the system before any attempt at mapping the indi-
vidual proteins onto a functional or structural scaffold. One
of the simplest initial analyses that gives a considerable
amount of insight into the nature of a molecular complex
and its possible functions is to look at the frequency of func-
tional annotation within it. Here, a number of options exist.
One of the richest sources is the Gene Ontology tool [8] that
provides hierarchically structured information on molecular
functions. However, in some situations, its use must be con-
sidered carefully as the depth and accuracy of annotation can
vary widely with each molecule. Further, molecular function
varies with cellular context and, for example, it has been
reported that the naive use of Gene Ontology (GO; http://
www.geneontology.org/) for classifying molecules in the
nervous system can be misleading [9], as the annotations
capture pleiotropic effects of protein functions in non-neu-
ronal cells.

Examining the frequency of secondary sequence-level
markers such as functional sites and structural motifs pro-
vides a simple and unbiased measure of enrichment for
specific low-level molecular functions (e.g. kinase activity,
calcium-binding domains). It is relatively simple to compare
the frequency of any such tag to that expected within a ran-
dom selection of proteins from the genome. There is a range
of possible sources for these, but most of the commonly used
annotations can be obtained directly through the InterPro
database [10]. It is also useful to consider domains that are
missing from the complex. For example, in our synapse
proteome analysis (Table 1) we see strong enrichment for
proteins containing domains linked to kinase activity and
calcium binding, both prominent features of signalling
pathways in the CNS [11]. Conversely, we see a paucity of
domains more commonly associated with DNA-binding
proteins, ribosomal subunits and proteolysis.

There are two possible reasons a specific molecular class
(e.g. Interpro domain) to be significantly over represented in
any biological sample. The first is that it reflects the true
molecular composition and function of the sample. How-
ever, it may also represent a bias in the purification or detec-
tion method towards certain classes of molecule. Although

Table 1. Protein features in MASC. Interpro domain frequencies
in the MASC complex. Upper: the Interpro domains that
are most highly enriched in the MASC complex com-
pared to the entire mouse genome. Lower: domains
most common within the mouse genome as a whole
that are missing entirely from the MASC complex. Inter-
pro ID are included for reference, see http://www.ebi.
ac.uk/interpro/.

Domain Accession MASC Genome

Enriched
Protein kinase IPR000719 11.8 3.75
Serine/threonine protein kinase IPR002290 10.2 1.69
SH3 IPR001452 8.06 1.51
Pleckstrin-like IPR001849 5.91 1.25
PDZ/DHR/GLGF IPR001478 5.91 0.74
Small GTP-binding protein domain IPR005225 5.38 1.49
Pleckstrin homology-type IPR011993 4.84 1.08
Calcium-binding EF-hand IPR002048 4.84 1.65
C2 IPR000008 4.84 0.82
IQ calmodulin-binding region IPR000048 3.76 0.31

Missing
Brix IPR007109 0 10.5
Peptidase M13, neprilysin IPR000718 0 7.85
FXYD IPR000272 0 7.48
Malate dehydrogenase IPR008267 0 5.65
20S proteasome, A and B subunits IPR001353 0 4.91
Cystine knot IPR006208 0 4.31
Protein tyrosine phosphatase,

catalytic region
IPR003595 0 4.31

Zn-finger, C2H2 subtype IPR007086 0 4.22
GABA A receptor, beta subunit IPR002289 0 3.54
Uracil-DNA glycosylase IPR002043 0 3.45

such instances are often obvious, they are difficult to quantify
to any degree of accuracy. For example, in our studies, we see
enrichment for proteins containing PDZ domains and it is
unclear whether this is a result of these domains being used
as part of the purification process or a true enrichment
within the complex of this class of molecule (in fact both are
highly plausible in the complex we have studied).

Perhaps the most difficult, yet in our case the most
interesting type of analysis, is that of non-sequence-related
biological annotation of molecules. General molecular
ontologies such as the Gene Ontology (GO; http://www.ge
neontology.org/) do not capture the detailed domain knowl-
edge (they were never designed to). In contrast, databases
such as Online Mendelian Inheritance in Man (OMIM;
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM)
catalogues and summarises the available evidence that
relates genes to human diseases. Resources such as OMIM
are not available for all areas of biology and when available
are often incomplete in their coverage. For each of the
186 proteins in the MASC complex we examined on-line
databases (such as OMIM) and also performed literature
searches for evidence that a protein was involved in a range
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of biological processes including clinical disorders for hu-
man proteins and various aspects of rodent physiology and
behaviour for the mouse orthologues.

3 Text mining for literature-based
annotations

Querying the literature for functional information concern-
ing the role (if any) of a small number of molecules in a sin-
gle biological process is relatively painless. If we are lucky
then even for a substantial list of proteins such information
will be readily available from carefully curated public (e.g.
OMIM) or commercial databases (e.g. TRANSPATH http://
www.biobase.de). In most cases, such resources will not exist
or be incomplete, requiring a substantial investment in
manual searching of the scientific literature. This effort may
be facilitated by text mining technologies. A complete review
of text mining and the specific problems encountered in
biological text mining is beyond the scope of this introduc-
tion but there are many dedicated reviews on these topics
[12, 13].

On the surface, neither manual searching nor text
mining approaches initially appear to be a significant prob-
lem. However, consider the case in detail: Proteins generally
have more than one specific name to which they have been
referred to in the literature (i.e. synonyms) and these lists of
alternative names can be extracted from the gene and protein
sequence annotation databases with relative ease. While the
main protein names in the curated sequence databases are
often unique (at least within the species) it is often the case
that the other synonyms can hit multiple proteins entities
within the same species, proteins in other species and non-
protein entities entirely. The number of synonyms attached
to a protein varies widely but can easily be more than ten.
The BioMinT service (http://biomint.oefai.at/) provides a
system to query synonyms across genes and proteins in
14 species [14]. A further complexity is often added by papers
that deviate from using any community agreed nomen-
clatures such as EC numbers and introduce more subtle
variations in spelling and formatting of names raising the
number of potential synonyms to search several fold (known
as query expansion).

For each search performed on a protein name or syno-
nym, we need to add to the query a selection of keywords
associated with the process we want to annotate. Finally, we
also want to add in specific conditions to help rule out false
positive hits. To improve speed and accuracy, abstracts are
usually classified and indexed before searching. For example,
all the abstracts including keywords such as phosphorylation,
phosphorylated and phosphorylating are merged into a single
classification group (phosphorylation). This group can then
used to select evidence for phosphorylation of any specific
protein on a pair-wise basis. Inferring biological information
from the literature directly often results in false positive
associations. Recent improvements in text mining technolo-

gies to include machine learning are making automated
approaches even more accurate. However, to ensure data
quality it is important that manual curation forms an inte-
gral part of the process.

For our own studies, we developed an in-house solution
to these issues by linking together several publicly available
packages. These were Lucene [15] for indexing and
searching, Rainbow (McCallum A. K. 1996 http://
www.cs.cmu.edu/,mccallum/bow) and weka [16] for text
classification.

4 Statistical analysis of annotations

Having generated multiple sets of annotations covering
sequence-based properties, phylogeny and various higher-
level functions/phenotypes, a potentially rich source of
information becomes available through their comparative
analysis. The significance of any overlap between a pair of
annotations may be evaluated by calculating its probability
under a random distribution.

Suppose that out of a set of N molecules, na and nb pos-
sess annotations a and b, respectively. If these annotations
are distributed randomly within the full set, the probability
p(nab) of nab possessing both is given by the function:

p(nab) = na!(N 2 na)!nb!(N 2 nb)!/[N!(na 2 nab)!
nab!(N 2 na 2 nb 1 nab)!(nb 2 nab)!] (1)

This probability distribution has a single maximum pml =
p(nml), with nml the most likely overlap occurring by chance
(depending on symmetry, nml and nml 1 1 may be equally
likely). Given that mab proteins possess both annotations, we
can evaluate the significance of any deviation of mab from nml

by calculating the probability P(mab) of finding an overlap as
or less likely under a random distribution [i.e. sum over all n
for which p(n) is less than or equal to p(mab)]:

P(mab) = Sn p(n) : p(n) ! p(mab) (2)

Under this definition, P(nml) = 1. Note that both tails of the
distribution contribute to P, which may be used to evaluate
deviations from nml in either direction. While it is possible
to adjust P to account for the number of comparisons made,
this does not necessarily improve the test. Sets of annota-
tions are seldom independent, ranging from mutually
exclusive terms (e.g. chromosomal location) to semi-redun-
dant functional classifications. This is especially the case
when investigating function at multiple levels, hierarchical
ontologies (e.g. GO terms) providing a simple example.
Such dependencies make it difficult to estimate the con-
tribution of false positives to the number of P(mab) below a
given significance threshold. On a more fundamental level,
why should the significance of an overlap between protein
function and psychiatric disorder depend on whether or not
chromosomal location was investigated? A major contribut-
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ing factor to these problems is the incompleteness and
potentially uneven nature of much of the data being ana-
lysed, which means that many of the most interesting
results may be of borderline significance. With these con-
siderations in mind, it is perhaps better to use P(mab) and
search for consistent patterns within the results, acknowl-
edging the potential drawbacks.

5 Protein interactions – where to get
them?

Reconstructing a model of a protein complex requires the
information to assemble the individual components from
the list obtained in the initial studies. For the static models
we discuss here, we use basic graph theory to represent the
complex as a network in which proteins are represented by
nodes and interactions by edges [17].

For small networks of proteins, one could always screen
each protein against each other using a biochemical interac-
tion assay such as yeast-2-hybrid [18]. For many species, high
throughput studies have been published using yeast-2-
hybrid assays and the results indexed on databases for rapid
retrieval. These include yeast, C. elegans and Drosophila.
These high throughput techniques are starting to mature
and with the latest methods, recently applied to the human
proteome [19], there is now a greater degree of confidence in
the resulting data.

The data from most of these high throughput studies, in
addition to many other smaller focussed studies have been
collated into a variety of public databases. The first step for
collecting these data for most people will be one of the major
on-line protein interaction databases such as BIND (http://
www.bind.ca/Action), IntAct (http://www.ebi.ac.uk/intact),
MINT (http://mint.bio.uniroma2.it/mint/), and DIP (http://
dip.doe-mbi.ucla.edu/).

The key to accessing the information in these databases
is a suitable list of protein ID (each database tends to use
different ID). Tools now exist on the web that are good for
converting between the various ID but in many cases it will
need to be done by hand. Ariadne Genomics provides an on-
line service that allows users to paste in a list of ID in one
format and convert to any one of a range of others (http://
www.ariadnegenomics.com/services/idmap.html).

For more detailed information on a protein-by-protein
basis, the EnsMart tool at EBI provides a unified query
interface to a number of databases and their ID (http://
www.ensembl.org/Multi/martview).

In many cases, the protein interaction information
from closely related species (interlogs) may be of interest.
This can either be directly included or used to add extra
confidence to interactions with less reliable sources.
There are several databases that list cross-species ortholo-
gue maps, normally based at the gene level. The ones we
commonly use are the Ensemble genome database [20] at
http://www.ensembl.org/index.html and InParanoid [21],

which also has software for building custom maps
available for download (http://inparanoid.cgb.ki.se/
index.html).

An important source for known protein-protein interac-
tions is the scientific literature. Searching on combinations
of synonyms and keywords can be used to rapidly extract
abstracts from public literature databases such as PubMed
(discussed above). A number of databases now exist that col-
late information extracted from abstracts using text-mining
techniques alone or through a combination of text mining
and subsequence manual curation. For all of these a careful
check of the provenance of the data is advised: where did the
information come from; what queries were used to define
the proteins and the interaction. Do these queries make
sense in terms of the accuracy of the protein nomenclature
(i.e. does the database refer to the molecule you think it
does), the species and any other constraints you may have on
the ‘quality’ of the interaction (e.g. database entries may refer
to indirect associations between proteins in large complexes
using text that is very similar to that describing direct bio-
chemical binding interactions).

We have used two literature-mined databases. The first of
these, iHOP is freely available on-line [22] at http://www.
ihop-net.org. Given a synonym, it will look up alternative
names and provide a list of abstracts that might refer to
potential interactions with other molecules in any species. It
provides a brief summary of the provenance of each entry,
highlighting the fragment of the abstract used to classify its
inclusion in the report for that molecule and a link to
PubMed or another data source for further details. This fea-
ture allows the rapid screening out of obvious false leads but
then requires systematic curation of the remaining results by
the end user. We have also looked at a commercial database
NetPro (from www.molecularconnections.com) that has
similar features but has additionally been subject to manual
curation by human experts. Each NetPro entry has associated
unique ID tags and some detail on the type of interaction and
the type of experimental evidence available to support the
interaction.

In our own studies, we have augmented all of the above
methods by implementing our own text mining tools to
check for further interactions missed by the on-line tools and
databases. An expert then assessed evidence gathered from
all sources for inclusion in the model, often referring at this
stage to the full text of scientific publications. Finally, a sec-
ond independent expert assessed each interaction. The re-
search group then discussed any discrepancies between two
rounds of assessment (around 1% of interactions).

6 Network analysis

Having gone to the effort of constructing a new model for a
protein complex, the first challenge is to visualise it in some
way. There are a number of graph visualisation tools that
have 2-D and 3-D layout algorithms directly embedded
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within them. The two that we use most often are Pajek [23],
an advanced package unfortunately limited to the Windows
operating system and BioLayout (e.g. Fig. 1) [24], a JAVA-
based freeware package that is platform independent. Most
of the public databases have applet-based tools that have
basic layout and presentation functionality but are usually
augmented with links from the images back to the database,
allowing the network to be explored. There is a clear need
from the community for a package that has the layout and
analysis functionality of Pajek, that is platform independent

and can be linked to databases to support point and click
queries of the underlying information (for example, a click
on an edge or interaction could pull up the supporting evi-
dence for the interaction). A number of projects are under-
way in this area, with Cytoscape [25] currently the most
advanced.

Before proceeding with the analysis of an interaction
network, it is worth evaluating the extent to which it captures
the various functional processes being investigated. It is
highly unlikely that interaction data will be available for all

Figure 1. The connected proteins of the MASC complex. Schematic diagrams of the MASC complex based on protein-pro-
tein interactions. Upper: The MASC protein interaction network with common protein names as described in [11]. The lower
panels show the distribution of functional annotation. Lower left: the dark grey proteins are those involved in schizophrenia
and statistical analysis suggests they are more tightly associated with the two clusters are the top of the network. Lower right:
proteins linked to an involvement in mental retardation proteins are evenly distributed across the network.
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molecules of interest and such data as there is may be subject
to bias. In addition, methods of analysis tend to focus on the
properties of single connected sets of molecules, of which
there may be several. The composition of a connected net-
work component may be analysed using the statistical
approach described earlier. Treating membership of the
component as a new annotation, this can be used to evaluate
the significance of any overlap between the component and
other functional/phenotypic annotations. A component does
not have to be an unbiased representation of the full set of
molecules to be of interest – in our investigation of synaptic
protein complexes, we found a single, large component
enriched for glutamate/calcium signal transduction and
containing the majority of all proteins with known electro-
physiological, behavioural and disease phenotypes. The
component thus captured key aspects of network function-
ality, primarily those associated with signal reception and
integration [11].

Over the past 5 years, there has been an intense interest
in the analysis and modelling of biological networks and
their mathematical properties. The renewed interest in this
field was largely a result of work on metabolic network
architecture [27], which led to the hypothesis that most, if not
all, biological networks follow a similar set of organisational
rules (evident in the widely observed power-law connectivity
distribution) and can be considered ‘scale-free’. There is a
great deal of debate and on-going research into the degree to
which different networks are truly scale-free, modular, hier-
archical, bow-tie or some combination of these various net-
work architectures. The common feature that has emerged is
that connectivity in biological networks almost without
exception follows an approximate power-law distribution
where the probability of finding a node with n connections
varies with n to the power k, where k is a constant for that
network. Put simply, nodes or proteins with a small number
of connections are extremely common whereas nodes or
proteins with large numbers of connections occur but are
rare. Another common feature is a ‘small-world’ property
that can result from a power-law distribution of connections.
In small-world networks, there is generally a relatively short
path (via one of the highly connected hub nodes/proteins)
between any pair of molecules in the complex. In signalling
pathways these features have two main effects, they result in
a generally robust network architecture and at the same time
introduce cross talk between the pathways embedded in the
complex. This makes understanding or predicting the effect
of a molecular or genetic disruption really quite difficult.

7 Functional prediction based on
architecture

How does the architecture fit with the functional annotation?
The first such analysis was performed in yeast [17] where a
correlation between vertex degree (number of interactions per
protein) and the viability of single gene knockouts was

observed. The so-called hub proteins (the rare, highly con-
nected proteins) were statistically more likely to be lethal
when mutated than the more common non-hub proteins
(with just a small number of connections). Several studies
since have taken this forward using more complex measures
such as the characteristic path length (sometimes called di-
ameter). The characteristic path length is a measure of how
closely interconnected a network is, being the average of the
shortest path length between all pairs of nodes. Removing a
highly connected node tends to increase network diameter,
while removing a node with few connections tends to have
minimal effects. However, if these connections are important
in the architecture the diameter can be affected more severely.

Assuming the complex has a uniform functional dis-
tribution (i.e. that the entire network is equally likely to be
involved in the process of interest) then these measurements
tend to correlate well with functional annotation. In most
cases, we are limited to qualitative data where we know a set of
molecules that are involved in a process or disease and we can
correlate the likelihood of annotation with a network parame-
ter such as vertex degree or network diameter. There are sev-
eral drawbacks in these approaches. First, the functional
annotation is often very incomplete and negative examples are
often missing (i.e. that protein X is not involved). Secondly,
where functional annotation and network connectivity are lit-
erature based there is an obvious potential for bias – proteins
that more people work on are more likely to have more con-
nections and more likely to have been linked to the process or
disease than those that few people are interested in.

For our work on the synaptic protein complex, this was a
concern, as both network information and functional annota-
tion were literature based. However, quantitative information
was available in the LTP literature where single gene knock-
outs were assessed quantitatively for physiological function.
Here again, we found significant correlation between network
properties and the magnitude of the phenotype.

8 Network substructure

The elegant work done on the yeast proteome worked so
well because a global function (viability) was used as a
measure [17]. Within such a large complex, sub-structure
does exist with different regions having distinct functions.
In the context of molecular interaction networks, sub-struc-
ture refers to the existence of molecular clusters char-
acterised by a high density of intra-cluster interactions and
much sparser connectivity with the rest of the network. A
large amount of research has gone into methods and anal-
ysis of clustered networks, particularly in metabolic net-
works where processes are directional. Clustering of prote-
omic networks can be done using a range of methods each
with advantages and disadvantages. As all methods are
heuristics for identifying the clustering, which best reflects
interaction data, it is important to evaluate any results. The
modularity score [26] provides an objective measure of how
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well a given clustering reflects network structure and may
be used to compare alternatives generated by the same or
different algorithms.

An exhaustive review of clustering methods is beyond
the scope of this article, as numerous methods exist and new
ones are constantly being developed. The performance of
each algorithm typically depends on the type of data being
analysed. Two reviews [27] (Berkhin, P., Technical report,
Accrue Software, San Jose, California, 2002. http://citeseer.
comp.nus.edu.sg/berkhin02survey.html) discuss and com-
pare a large number of clustering algorithms, including
those most commonly used. In addition, we would note the
recent use of an information-based clustering algorithm [28]
in the study of modularity in genetic networks [29]. In our
own work, a divisive clustering algorithm [24] has proven
useful. Simply, this algorithm searches for the single edge/
interaction within the network that occurs most frequently
on all possible paths between vertices. This edge is then
removed from the network and the process restarted. As the
network fragments into distinct clusters, the protein-to-clus-
ter assignments are recorded and the modularity score used
to identify which level of the resulting hierarchy best reflects
network structure (see Fig. 1).

Once we have a clustered network we can look at the dis-
tribution of annotations over clusters using the statistical
methods described earlier. In the MASC network, for exam-
ple, we observe a cluster that is significantly enriched for as-
sociation with schizophrenia, ionotropic glutamate receptors,
synaptic plasticity and PDZ domain containing proteins when
compared to the rest of the network. On the other hand, pro-
teins associated with mental retardation are evenly distributed
throughout the complex (Fig. 1). These observations suggest
that the complex has general functional properties in neuro-
nal function where perturbation results in generalised mental
retardation (in a manner similar to the yeast proteome and
viability) but that sub-structures are associated with more
specific functionality (e.g. schizophrenia).

9 Concluding remarks

We have attempted to provide an introductory walkthrough of
the methods and resources available for reconstructing a
protein complex model given a list of molecules hot off a
mass-spec machine. Limitations with methods and sources of
error must always be considered carefully as it is all too easy
to construct a model on extremely shaky foundations. The
tools and methods described here are developing extremely
rapidly and we expect that the databases in particular will
increase in coverage and accuracy at an extremely fast rate.

At present, expertly curated datasets provide the highest
quality information for model construction. However, cura-
tion is very expensive and the literature is biased towards a
small subset of molecules. High throughput technologies are
becoming more reliable and this will enable more complete
models of protein complexes to be constructed. The first

studies using such static models of protein complexes are
predicting new molecules to be involved in various functional
processes. A lot of further research is required to test these
predictions and to refine and develop methods of analysis.

We have discussed the available methods in the context
of our own studies that focus on the proteins in the mam-
malian post-synaptic density. However, these methods are
equally applicable to other biological fields where samples
containing protein complexes are being characterised.
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