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Sequence Alignment 

Armstrong, 2008 

Why? 

•  Genome sequencing gives us new gene 
sequences 

•  Network biology gives us functional 
information on genes/proteins 

•  Analysis of mutants links unknown genes to 
diseases 

•  Can we learn anything from other known 
sequences about our new gene/protein? 
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What is it? 

ACCGGTATCCTAGGAC 

ACCTATCTTAGGAC 

Are these two sequences related? 
How similar (or dissimilar) are they? 
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What is it? 

ACCGGTATCCTAGGAC 

|||  |||| |||||| 

ACC--TATCTTAGGAC 

•  Match the two sequences as closely as possible = 
aligned 

•  Therefore, alignments need a score 

Armstrong, 2008 

Why do we care? 

•  DNA and Proteins are based on linear sequences 
•  Information is encoded in these sequences 
•  All bioinformatics at some level comes back to 

matching sequences that might have some noise or 
variability  
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Alignment Types 

•  Global: used to compare to similar sized 
sequences.  
– Compare closely related genes 
– Search for mutations or polymorphisms 

in a sequence compared to a reference. 
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Alignment Types 

•  Local: used to find shared subsequences.  
– Search for protein domains 
– Find gene regulatory elements 
– Locate a similar gene in a genome 

sequence. 
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Alignment Types 

•  Ends Free: used to find joins/overlaps.  
– Align the sequences from adjacent 

sequencing primers. 

Armstrong, 2008 

How do we score alignments? 

ACCGGTATCCTAGGAC 
|||  |||| |||||| 

ACC--TATCTTAGGAC 
•  Assign a score for each match along the 

sequence. 
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How do we score alignments? 

ACCGGTATCCTAGGAC 
|||  |||| |||||| 

ACC--TATCTTAGGAC 
•  Assign a score (or penalty) for each 

substitution. 

Armstrong, 2008 

How do we score alignments? 

ACCGGTATCCTAGGAC 
|||  |||| |||||| 

ACC--TATCTTAGGAC 
•  Assign a score (or penalty) for each 

insertion or deletion. 
•  insertions/deletions otherwise known as 

indels 
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How do we score alignments? 

ACCGGTATCCTAGGAC 
|||  |||| |||||| 

ACC--TATCTTAGGAC 

•  Matches and substitutions are ‘easy’ to deal 
with. 
– We’ll look at substitution matrices later. 

•  How do we score indels: gaps? 
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How do we score gaps? 

ACCGGTATCC---GAC 
|||  ||||    ||| 

ACC--TATCTTAGGAC 

•  A gap is a consecutive run of indels 
•  The gap length is the number of indels. 
•  The simple example here has two gaps of 

length 2 and 3 
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How do we score gaps? 

ACCGGTATCC---GAC 
|||  ||||    ||| 

ACC--TATCTTAGGAC 
•  Constant:  Length independent weight 
•  Affine:   Open and Extend weights. 
•  Convex:   Each additional gap contributes less 
•  Arbitrary:  Some arbitrary function on length 
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Choosing Gap Penalties 

•  The choice of Gap Scoring Penalty is very 
sensitive to the context in which it is 
applied: 
–  introns vs exons 
–  protein coding regions 
– mis-matches in PCR primers 



9 

Armstrong, 2008 

Substitution Matrices 

•  Substitution matrices are used to score 
substitution events in alignments. 

•  Particularly important in Protein sequence 
alignments but relevant to DNA sequences 
as well. 

•  Each scoring matrix represents a particular 
theory of evolution 
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Similarity/Distance 

•  Distance is a measure of the cost or 
replacing one residue with another. 

•  Similarity is a measure of how similar a 
replacement is. 

e.g. replacing a hydrophobic residue with a hydrophilic one. 

•  The logic behind both are the same and the 
scoring matrices are interchangeable. 
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DNA Matrices 
Identity matrix    BLAST 
     A C G T    A  C  G  T  
A 1 0 0 0      A  5 –4 –4 -4  
C 0 1 0 0      C –4  5 –4 -4  
G 0 0 1 0      G –4 –4  5 -4  
T 0 0 0 1      T  -4 –4 –4 5 


However, some changes are more likely to occur than others (even in 
DNA). When looking at distance, the ease of mutation is a factor. a.g. 
A-T and A-C replacements are rarer than A-G or C-T. 
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Protein Substitution Matrices 

 How can we score a substitution in an aligned 
sequence? 

•  Identity matrix like the simple DNA one.  
•  Genetic Code Matrix:  

 For this, the score is based upon the minimum number of 
DNA base changes required to convert one amino acid into 
the other.  
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Protein Substitution Matrices 

 How can we score a substitution in an aligned 
sequence? 

•  Amino acid property matrix 
 Assign arbitrary values to the relatedness of different 
amino acids: 
 e.g. hydrophobicity , charge, pH, shape, size 
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Matrices based on Probability 

 Sij = log (qij/pipj) 

 Sij is the log odds ratio of two probabilities: amino 
acids i and j are aligned by evolutionary descent 
and the probability that they aligned at random. 

 This is the basis for commonly used substitution 
matrices. 
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PAM matrices 

 Dayhoff, Schwarz and Orcutt 1978 took these into 
consideration when constructing the PAM 
matrices: 
 Took 71 protein families - where the sequences 
differed by no more than 15% of residues (i.e. 
85% identical) 
  Aligned these proteins 
  Build a theoretical phylogenetic tree 
  Predicted the most likely residues in the  

 ancestral sequence 
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PAM Matrices 

•  Ignore evolutionary direction 
•   Obtained frequencies for residue X  being 

substituted by residue Y over time period Z 

•   Based on 1572 residue changes  

•   They defined a substitution matrix as 1 PAM 
(point accepted mutation) if the expected number 
of substitutions was 1% of the sequence length.  
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PAM Matrices 

 To increase the distance, they multiplied the 
the PAM1 matrix. 

 PAM250 is one of the most commonly 
used.  
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PAM - notes 

 The PAM matrices are rooted in the original 
datasets used to create the theoretical trees 

 They work well with closely related sequences 

 Based on data where substitutions are most likely 
to occur from single base changes in codons. 
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PAM - notes 

 Biased towards conservative mutations in the DNA 
sequence (rather than amino acid substitutions) that 
have little effect on function/structure. 

 Replacement at any site in the sequence depends 
only on the amino acid at that site and the 
probability given by the table.This does not 
represent evolutionary processes correctly. Distantly 
related sequences usually have regions of high 
conservation (blocks).  
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PAM - notes 

 36 residue pairs were not observed in the dataset 
used to create the original PAM matrix 

 A new version of PAM was created in 1992 using 
59190 substitutions: Jones, Taylor and Thornton 
1992 CAMBIOS 8 pp 275 

Armstrong, 2008 

BLOSUM matrices 

  Henikoff and Henikoff 1991 

 Took sets of aligned ungapped regions from protein 
families from the BLOCKS database. 

 The BLOCKS database contain short protein 
sequences of high similarity clustered together. 
These are found by applying the MOTIF algorithm 
to the SWISS-PROT and other databases. The 
current release has 8656 Blocks.  
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BLOSUM matrices 

  Sequences were clustered whenever the %identify 
exceeded some percentage level. 

 Calculated the frequency of any two residues being 
aligned in one cluster also being aligned in another 

   
 Correcting for the size of each cluster. 

Armstrong, 2008 

BLOSUM matrices 

 Resulted in the fraction of observed substitutions 
between any two residues over all observed 
substitutions. 

 The resulting matrices are numbered inversely from 
the PAM matrices so the BLOSUM50 matrix was 
based on clusters of sequence over 50% identity, 
and BLOSUM62 where the clusters were at least 
62% identical.  
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BLOSUM 62 Matrix 

Armstrong, 2008 

Summary so far… 

•  Gaps  
–  Indel operations 
– Gap scoring methods 

•  Substitution matrices 
– DNA largely simple matrices 
– Protein matrices are based on probability 
– PAM and BLOSUM 
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How do we do it? 

•  Like everything else there are several 
methods and choices of parameters 

•  The choice depends on the question being 
asked 
– What kind of alignment? 
– Which substitution matrix is appropriate? 
– What gap-penalty rules are appropriate? 
–  Is a heuristic method good enough? 
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Working Parameters 
•  For proteins, using the affine gap penalty 

rule and a substitution matrix: 
Query Length   Matrix   Gap (open/extend) 

<35   PAM-30  9,1 
35-50   PAM-70  10,1 
50-85   BLOSUM-80  10,1   
>85   BLOSUM-62  11,1 
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Alignment Types 

•  Global: used to compare to similar sized 
sequences. 

•  Local: used to find similar subsequences.  

•  Ends Free: used to find joins/overlaps. 

Armstrong, 2008 

Global Alignment 

•  Two sequences of similar length 
•  Finds the best alignment of the two 

sequences 
•  Finds the score of that alignment 
•  Includes ALL bases from both sequences in 

the alignment and the score. 

•  Needleman-Wunsch algorithm 
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Needleman-Wunsch algorithm 

•  Gaps are inserted into, or at the ends of each 
sequence. 

•  The sequence length (bases+gaps) are 
identical for each sequence 

•  Every base or gap in each sequence is 
aligned with a base or a gap in the other 
sequence  

Armstrong, 2008 

Needleman-Wunsch algorithm 

•  Consider 2 sequences S and T 
•  Sequence S has n elements 
•  Sequence T has m elements 
•  Gap penalty ? 
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How do we score gaps? 

ACCGGTATCC---GAC 
|||  ||||    ||| 

ACC--TATCTTAGGAC 
•  Constant:  Length independent weight 
•  Affine:  Open and Extend weights. 
•  Convex:  Each additional gap contributes less 
•  Arbitrary:  Some arbitrary function on length 

– Lets score each gap as –1 times length 

Armstrong, 2008 

Needleman-Wunsch algorithm 

•  Consider 2 sequences S and T 
•  Sequence S has n elements 
•  Sequence T has m elements 
•  Gap penalty –1 per base (arbitrary gap penalty) 
•  An alignment between base i in S and a gap in T is 

represented:   (Si,-) 
•  The score for this is represented :  σ(Si,-) = -1 
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Needleman-Wunsch algorithm 

•  Substitution/Match matrix for a simple alignment 
•  Several models based on probability…. 

A C G T 
A 2 -1 -1 -1 
C -1 2 -1 -1 
G -1 -1 2 -1 
T -1 -1 -1 2 

Armstrong, 2008 

Needleman-Wunsch algorithm 

•  Substitution/Match matrix for a simple alignment 
•  Simple identify matrix (2 for match, -1 for 

mismatch) 
•  An alignment between base i in S and base j in T is 

represented: (Si,Tj) 
•  The score for this occurring is represented: σ(Si,Tj) 



23 

Armstrong, 2008 

Needleman-Wunsch algorithm 

•  Set up a array V of size n+1 by m+1 
•  Row 0 and Column 0 represent the cost of adding 

gaps to either sequence at the start of the 
alignment 

•  Calculate the rest of the cells row by row by 
finding the optimal route from the surrounding 
cells that represent a gap or match/mismatch 
–  This is easier to demonstrate than to explain 

Armstrong, 2008 

Needleman-Wunsch algorithm 

–  lets start by trying out a simple example 
alignment: 

S = ACCGGTAT 
T =  ACCTATC 
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Needleman-Wunsch algorithm 

–  Get lengths 

S = ACCGGTAT 
T =  ACCTATC 

Length of S = m = 8 
Length of T = n = 7 

 (lengths approx equal so OK for Global Alignment) 

Armstrong, 2008 

Create array m+1 by n+1 
(i.e. 9 by 8) 
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Add on bases from each sequence 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

Armstrong, 2008 

Represent scores for gaps in row/
col 0 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-2 
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Represent scores for gaps in row/
col 0 

-7 
-6 
-5 
-4 
-3 
-2 
-1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 

Armstrong, 2008 

For each cell consider the ‘best’ 
path 

-7 
-6 
-5 
-4 
-3 
-2 
-1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
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For each cell consider the ‘best’ 
path 

-1 
-1 0 

          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-3 -2 

(S1,T0) &  σ(-,T1) = -1 
Running total (-1+-1)=-2 
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For each cell consider the ‘best’ 
path 

-1 
-1 0 

          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-3 -2 

(S1,T0) &  σ(-,T1) = -1 
Running total (-1+-1)=-2 

(S0, T1) &  σ(S1,-) = -1 
Running total (-1+-1)=-2 
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For each cell consider the ‘best’ 
path 

-1 
-1 0 

          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-3 -2 

(S1,T0) &  σ(-,T1) = -1 
Running total (-1+-1)=-2 

(S0, T1) &  σ(S1,-) = -1 
Running total (-1+-1)=-2 

(S0,T0) &  σ(S1,T1) = 2 
Running total (0+2)=2 

Armstrong, 2008 

Choose and record ‘best’ path 

2 -1 
-1 0 

          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-3 -2 
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Choose and record ‘best’ path 

2 -1 
-1 0 

          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-3 -2 

(S2,T0) &  σ(-,T1) 
Running total (-2+-1)=-3 

(S1,T1) &  σ(S2,-) 
Running total (2+-1)=1 

(S1,T0) &  σ(S2,T1)  
Running total (-1+-1)=-2 

1 
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Continue…. 

-7 
-6 
-5 
-4 
-3 
-2 

1 2 -1 
-1 0 

          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 
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Continue…. 

-7 
-6 
-5 
-4 
-3 

-2 -1 0 1 -2 
-5 1 2 -1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

1 4 3 2 
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Continue…. 

-7 
-6 
-5 
-4 

1 2 3 4 5 6 3 -3 
-2 -1 0 1 -2 
-5 1 2 -1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

1 4 3 2 
0 
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Continue…. 

-7 
-6 
-5 

4 5 6 4 4 5 2 -1 -4 
1 2 3 4 5 6 3 -3 
-2 -1 0 1 -2 
-5 1 2 -1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

1 4 3 2 
0 
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Continue…. 

-7 
-6 

7 8 5 3 4 4 1 -2 -5 
4 5 6 4 4 5 2 -1 -4 
1 2 3 4 5 6 3 -3 
-2 -1 0 1 -2 
-5 1 2 -1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

1 4 3 2 
0 
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Continue…. 

-7 
10 7 5 3 3 3 0 -3 -6 
7 8 5 3 4 4 1 -2 -5 
4 5 6 4 4 5 2 -1 -4 
1 2 3 4 5 6 3 -3 
-2 -1 0 1 -2 
-5 1 2 -1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

1 4 3 2 
0 
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Finally. 

9 6 4 2 2 2 -1 -4 -7 
10 7 5 3 3 3 0 -3 -6 
7 8 5 3 4 4 1 -2 -5 
4 5 6 4 4 5 2 -1 -4 
1 2 3 4 5 6 3 -3 
-2 -1 0 1 -2 
-5 1 2 -1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

1 4 3 2 
0 

= Score 
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Finally. 

9 6 4 2 2 2 -1 -4 -7 
10 7 5 3 3 3 0 -3 -6 
7 8 5 3 4 4 1 -2 -5 
4 5 6 4 4 5 2 -1 -4 
1 2 3 4 5 6 3 -3 
-2 -1 0 1 -2 
-5 1 2 -1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

1 4 3 2 
0 
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We recreate the alignment using by following the 
pointers back through the array to the origin 

9 6 4 2 2 2 -1 -4 -7 
10 7 5 3 3 3 0 -3 -6 
7 8 5 3 4 4 1 -2 -5 
4 5 6 4 4 5 2 -1 -4 
1 2 3 4 5 6 3 -3 
-2 -1 0 1 -2 
-5 1 2 -1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

1 4 3 2 
0 
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9 6 4 2 2 2 -1 -4 -7 
10 7 5 3 3 3 0 -3 -6 
7 8 5 3 4 4 1 -2 -5 
4 5 6 4 4 5 2 -1 -4 
1 2 3 4 5 6 3 -3 
-2 -1 0 1 -2 
-5 1 2 -1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

1 4 3 2 
0 

                     - (S) 

                     C (T) 

Armstrong, 2008 

                    T- (S) 
                    |     
                    TC (T) 

9 6 4 2 2 2 -1 -4 -7 
10 7 5 3 3 3 0 -3 -6 
7 8 5 3 4 4 1 -2 -5 
4 5 6 4 4 5 2 -1 -4 
1 2 3 4 5 6 3 -3 
-2 -1 0 1 -2 
-5 1 2 -1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

1 4 3 2 
0 
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                   AT- (S) 
                   ||     
                   ATC (T) 

9 6 4 2 2 2 -1 -4 -7 
10 7 5 3 3 3 0 -3 -6 
7 8 5 3 4 4 1 -2 -5 
4 5 6 4 4 5 2 -1 -4 
1 2 3 4 5 6 3 -3 
-2 -1 0 1 -2 
-5 1 2 -1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

1 4 3 2 
0 
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                  TAT- (S) 
                  |||     
                  TATC (T) 

9 6 4 2 2 2 -1 -4 -7 
10 7 5 3 3 3 0 -3 -6 
7 8 5 3 4 4 1 -2 -5 
4 5 6 4 4 5 2 -1 -4 
1 2 3 4 5 6 3 -3 
-2 -1 0 1 -2 
-5 1 2 -1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

1 4 3 2 
0 
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                 GTAT- (S) 
                  |||     
                 -TATC (T) 

9 6 4 2 2 2 -1 -4 -7 
10 7 5 3 3 3 0 -3 -6 
7 8 5 3 4 4 1 -2 -5 
4 5 6 4 4 5 2 -1 -4 
1 2 3 4 5 6 3 -3 
-2 -1 0 1 -2 
-5 1 2 -1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

1 4 3 2 
0 
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                GGTAT- (S) 
                  |||     
                --TATC (T) 

9 6 4 2 2 2 -1 -4 -7 
10 7 5 3 3 3 0 -3 -6 
7 8 5 3 4 4 1 -2 -5 
4 5 6 4 4 5 2 -1 -4 
1 2 3 4 5 6 3 -3 
-2 -1 0 1 -2 
-5 1 2 -1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

1 4 3 2 
0 
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               CGGTAT- (S) 
               |  |||     
               C--TATC (T) 

9 6 4 2 2 2 -1 -4 -7 
10 7 5 3 3 3 0 -3 -6 
7 8 5 3 4 4 1 -2 -5 
4 5 6 4 4 5 2 -1 -4 
1 2 3 4 5 6 3 -3 
-2 -1 0 1 -2 
-5 1 2 -1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

1 4 3 2 
0 
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              CCGGTAT- (S) 
              ||  |||     
              CC--TATC (T) 

9 6 4 2 2 2 -1 -4 -7 
10 7 5 3 3 3 0 -3 -6 
7 8 5 3 4 4 1 -2 -5 
4 5 6 4 4 5 2 -1 -4 
1 2 3 4 5 6 3 -3 
-2 -1 0 1 -2 
-5 1 2 -1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

1 4 3 2 
0 
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             ACCGGTAT- (S) 
             |||  |||     
             ACC--TATC (T) 

9 6 4 2 2 2 -1 -4 -7 
10 7 5 3 3 3 0 -3 -6 
7 8 5 3 4 4 1 -2 -5 
4 5 6 4 4 5 2 -1 -4 
1 2 3 4 5 6 3 -3 
-2 -1 0 1 -2 
-5 1 2 -1 

-1 0 
          A  C  C   G  G  T  A  T  (S) 

A 

C 

C 

T 

A 

T 

C 

(T) 

-8 -7 -6 -5 -4 -3 -2 
0 -1 -2 -3 -4 

1 4 3 2 
0 
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Checking the result 

•  Our alignment considers ALL bases in each 
sequence 

•  6 matches = 12 points, 3 gaps = -3 points 
•  Score = 9 confirmed. 

             ACCGGTAT- (S) 
             |||  |||     
             ACC--TATC (T) 
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A bit more formally.. 
Base conditions:   V(i,0) =     σ(Sk,-) 

V(0,j) =     σ(-,Tk) ∑ 

∑ 
i 

j 

k=0 

k=0 

Recurrence relation:      for 1<=i <= n, 1<=j<=m: 

V(i,j) = max  { 

V(i-1,j-1) + σ(Si,Tj) 
V(i-1,j) + σ(Si,-) 
V(i,j-1) + σ(-,Tj) 

Armstrong, 2008 

Time Complexity 

•  Each cell is dependant on three others and 
the two relevant characters in each sequence 

•  Hence each cell takes a constant time 
•  (n+1) x (m+1) cells 

•  Complexity is therefore    O(nm) 
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Space Complexity 

•  To calculate each row we need the current row 
and the row above only. 

•  Therefore to get the score, we need O(n+m) space 

•  However, if we need the pointers as well, this 
increases to O(nm) space 

•  This is a problem for very long sequences  
–  think about the size of whole genomes 

Armstrong, 2008 

Global alignment in linear space 

•  Hirschberg 1977 applied a ‘divide and 
conquer’ algorithm to Global Alignment to 
solve the problem in linear space. 

•  Divide the problem into small manageable 
chunks 

•  The clever bit is finding the chunks 
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dividing... 
Compute matrix V(A,B) saving the values for n/2

th row 
 - call this matrix F 

Compute matrix V(Ar,Br) saving the values for n/2
th row 

 - call this matrix B 
Find column k so that the crossing point (n/2,k) satisfies: 

 F(n/2,k) + B(n/2,m-k) = F(n,m) 

Now we have two much smaller problems: 
(0,0) -> (n/2,k)  and (n,m) -> (n/2,m-k)  

Armstrong, 2008 

Hirschberg’s divide and conquer 
approach (0,0) 

(m,n) 

n/2 
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Complexity 

•  After applying Hirschberg’s divide and conquer approach 
we get the following: 

–  Complexity O(mn) 

–  Space O(min(m,n)) 

•  For the proofs, see D.S. Hirschberg. (1977) Algorithms for 
the longest common subsequence problem. J. A.C.M 24: 
664-667 

Armstrong, 2008 

OK where are we? 

•  The Needleman-Wunsch algorithm finds the 
optimum alignment and the best score. 
– NW is a dynamic programming algorithm 

•  Space complexity is a problem with NW 
•  Addressed by a divide and conquer 

algorithm 
•  What about local and ends-free alignments? 
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Smith-Waterman algorithm 

•  Between two sequences, find the best two 
subsequences and their score. 

•  We want to ignore badly matched sequence 
•  Use the same types of substitution matrix 

and gap penalties 
•  Use a modification of the previous dynamic 

programming approach. 

Armstrong, 2008 

Smith-Waterman algorithm 

•  If Si matches Tj then σ(Si,Tj) >=0 
•  If they do not match or represent a gap then <=0 

•  Lowest allowable value of any cell is 0 
•  Find the cell with the highest value (i,j) and extend 

the alignment back to the first zero value 
•  The score of the alignment is the value in that cell 
•  A quick example if best... 
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min value of any cell is 0 

0 
0 
0 
0 
0 
0 
0 

0 0 0 0 0 0 0 0 0 
          A  C  C   G  G  T  A  T  (S) 

T 

T 

G 

T 

A 

T 

C 

(T) 
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min value of any cell is 0 

0 
0 
0 
0 
0 

3 1 2 0 0 0 0 0 0 
2 1 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 

          A  C  C   G  G  T  A  T  (S) 

T 

T 

G 

T 

A 

T 

C 

(T) 
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min value of any cell is 0 

7 4 1 2 3 4 3 0 0 
8 5 2 0 0 0 1 1 0 
5 6 3 0 0 0 1 2 0 
3 3 4 1 1 0 0 0 0 
2 1 1 2 2 0 0 0 0 
3 1 2 0 0 0 0 0 0 
2 1 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 

          A  C  C   G  G  T  A  T  (S) 

T 

T 

G 

T 

A 

T 

C 

(T) 
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Find biggest cell and map alignment 
from there 

7 4 1 2 3 4 3 0 0 
8 5 2 0 0 0 1 1 0 
5 6 3 0 0 0 1 2 0 
3 3 4 1 1 0 0 0 0 
2 1 1 2 2 0 0 0 0 
3 1 2 0 0 0 0 0 0 
2 1 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 

          A  C  C   G  G  T  A  T  (S) 

T 

T 

G 

T 

A 

T 

C 

(T) 
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GTAT(S) 
|||| 
GTAT(T) 

7 4 1 2 3 4 3 0 0 
8 5 2 0 0 0 1 1 0 
5 6 3 0 0 0 1 2 0 
3 3 4 1 1 0 0 0 0 
2 1 1 2 2 0 0 0 0 
3 1 2 0 0 0 0 0 0 
2 1 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 

          A  C  C   G  G  T  A  T  (S) 

T 

T 

G 

T 

A 

T 

C 

(T) 
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Smith-Waterman cont’d 

•  Complexity 
–  Time is O(nm) as in global alignments 
–  Space is O(nm) as in global alignments 

–  A mod of Hirschbergs algorithm allows O(n+m)     (n
+m) as two rows need to be stored at a time instead of 
one as in the global alignment. 
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A bit more formally.. 
Base conditions: ∀i,j. V(i,0) = 0, V(0,j) = 0 

Recurrence relation:     for 1<=i <= n, 1<=j<=m: 

V(i,j) = max  { 

0 
V(i-1,j-1) + σ(Si,Tj) 
V(i-1,j) + σ(Si,-) 
V(i,j-1) + σ(-,Tj) 

Compute i* and j* V(i *,j *) = max 1<=i<=n,1<=j<=m V(i,j)  

Armstrong, 2008 

Ends-free alignment 

•  Find the overlap between two sequences such start 
the start of one overlaps is in the alignment and 
the end of the other is in the alignment. 

•  Essential to DNA sequencing strategies. 
–  Building genome fragments out of shorter sequencing 

data. 
•  Another variant of the Global Alignment Problem 
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Ends-free alignment 

•  Set the initial conditions to zero weight   
–  allow indels/gaps at the ends without penalty 

•  Fill the array/table using the same recursion 
model used in global/local alignment 

•  Find the best alignment that ends in one row 
or column 
–  trace this back 

Armstrong, 2008 

min value row0 & col0 is 0 

5 5 5 6 4 4 1 0 0 
6 5 6 4 4 5 2 -1 0 
7 4 3 4 5 3 3 0 0 
8 5 2 1 2 3 4 1 0 
5 6 3 0 0 0 1 2 0 
2 3 4 1 0 1 1 -1 0 
-1 0 1 2 -1 -1 -1 -1 0 
0 0 0 0 0 0 0 0 0 

          G  T  T   A  C  T  G  T  (S) 

C 

T 

G 

T 

A 

T 

C 

(T) 
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Find the best ‘end’ point in an end col or 
row 

5 5 5 6 4 4 1 0 0 
6 5 6 4 4 5 2 -1 0 
7 4 3 4 5 3 3 0 0 
8 5 2 1 2 3 4 1 0 
5 6 3 0 0 0 1 2 0 
2 3 4 1 0 1 1 -1 0 
-1 0 1 2 -1 -1 -1 -1 0 
0 0 0 0 0 0 0 0 0 

          G  T  T   A  C  T  G  T  (S) 

C 

T 

G 

T 

A 

T 

C 

(T) 
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Trace the best route from there to the 
origin and end 

5 5 5 6 4 4 1 0 0 
6 5 6 4 4 5 2 -1 0 
7 4 3 4 5 3 3 0 0 
8 5 2 1 2 3 4 1 0 
5 6 3 0 0 0 1 2 0 
2 3 4 1 0 1 1 -1 0 
-1 0 1 2 -1 -1 -1 -1 0 
0 0 0 0 0 0 0 0 0 

          G  T  T   A  C  T  G  T  (S) 

C 

T 

G 

T 

A 

T 

C 

(T) 
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GTTACTGT---(S) 
    ||||  
----CTGTATC(T) 

5 5 5 6 4 4 1 0 0 
6 5 6 4 4 5 2 -1 0 
7 4 3 4 5 3 3 0 0 
8 5 2 1 2 3 4 1 0 
5 6 3 0 0 0 1 2 0 
2 3 4 1 0 1 1 -1 0 
-1 0 1 2 -1 -1 -1 -1 0 
0 0 0 0 0 0 0 0 0 

          G  T  T   A  C  T  G  T  (S) 

C 

T 

G 

T 

A 

T 

C 

(T) 
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A bit more formally.. 
Base conditions: ∀i,j. V(i,0) = 0, V(0,j) = 0 

Recurrence relation:     for 1<=i <= n, 1<=j<=m: 

V(i,j) = max  { 

V(i-1,j-1) + σ(Si,Tj) 
V(i-1,j) + σ(Si,-) 
V(i,j-1) + σ(-,Tj) 

Search for i* such that:  V(i*,m)=max1<=i<=n,m V(i,j) 
Search for j* such that:  V(n,j*)=max1<=j<=n,m V(i,j) 

Define alignment score V(S,T) = max   { V(n,j*) 
V(i*,m) 
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Summary so far... 

•  Dynamic programming algorithms can 
solve global, local and ends-free alignment 

•  They give the optimum score and alignment 
using the parameters given 

•  Divide and conquer approaches make the 
space complexity manageable for small-
medium sized sequences 

Armstrong, 2008 

Dynamic Programming Issues 

•  For huge sequences, even linear space constraints 
are a problem. 

•  We used a very simple gap penalty 
•  The Affine Gap penalty is most commonly used. 

–  Cost to open a gap 
–  Cost to extend an open gap 

•  Need to track and evaluate the ‘gap’ state in the 
array 
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Tracking the gap state 

•  We can model the matches and gap 
insertions as a finite state machine: 

Taken from Durbin, chapter 2.4 

Armstrong, 2008 

Tracking the gap state 

•  Working along the alignment process... 

Taken from Durbin, chapter 2.4 
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•  When searching multiple genomes, the sizes still 
get too big! 

•  Several approaches have been tried: 
•  Use huge parallel hardware: 

–  Distribute the problem over many CPUs  
–  Very expensive 

•  Implement in Hardware 
–  Cost of specialist boards is high 
–  Has been done for Smith-Waterman on SUN  

Real Life Sequence Alignment 

Armstrong, 2008 

•  Use a Heuristic Method 
– Faster than ‘exact’ algorithms 
– Give an approximate solution 
– Software based therefore cheap 

•  Based on a number of assumptions:  

Real Life Sequence Alignment 
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Assumptions for Heuristic 
Approaches 

•  Even linear time complexity is a problem 
for large genomes 

•  Databases can often be pre-processed to a 
degree 

•  Substitutions more likely than gaps 
•  Homologous sequences contain a lot of 

substitutions without gaps which can be 
used to help find start points in alignments 

Armstrong, 2008 

Conclusions 

•  Dynamic programming algorithms are 
expensive but they give you the optimum 
alignment and exact score 

•  Choice of GAP penalty and substitution 
matrix are critically important 

•  Heuristic approaches are generally required 
for high throughput or very large alignments 
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Heuristic Methods 

•  FASTA 
•  BLAST 
•  Gapped BLAST 
•  PSI-BLAST 

Armstrong, 2008 

Assumptions for Heuristic 
Approaches 

•  Even linear time complexity is a problem 
for large genomes 

•  Databases can often be pre-processed to a 
degree 

•  Substitutions more likely than gaps 
•  Homologous sequences contain a lot of 

substitutions without gaps which can be 
used to help find start points in alignments 
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BLAST 

Altschul, Gish, Miller, Myers and Lipman (1990) Basic 
local alignment search tool. J Mol Biol 215:403-410 

•  Developed on the ideas of FASTA  
–  uses short identical matches to reduce search = 

hotspot 
•  Integrates the substitution matrix in the first stage 

of finding the hot spots 
•  Faster hot spot finding 

Armstrong, 2008 

BLAST definitions 

•  Given two strings S1 and S2 
•  A segment pair is a pair of equal lengths 

substrings of S1 and S2 aligned without gaps 
•  A locally maximal segment is a segment whose 

alignment score (without gaps) cannot be 
improved by extending or shortening it. 

•  A maximum segment pair (MSP) in S1 and S2 is a 
segment pair with the maximum score over all 
segment pairs. 
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BLAST Process 

•  Parameters:  
– w: word length (substrings) 
–  t: threshold for selecting interesting alignment 

scores 

Armstrong, 2008 

BLAST Process 

•  1. Find all the w-length substrings from the 
database with an alignment score >t 
–  Each of these (similar to a hot spot in FASTA) is called 

a hit 
–  Does not have to be identical 
–  Scored using substitution matrix and score compared to 

the threshold t (which determines number found) 
–  Words size can therefore be longer without losing 

sensitivity: AA - 3-7 and DNA ~12 
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BLAST Process 

•  2. Extend hits: 
–  extend each hit to a local maximal segment 
–  extension of initial w size hit may increase or decrease 

the score 
–  terminate extension when a threshold is exceeded 
–  find the best ones (HSP) 

•  This first version of Blast did not allow gaps…. 

Armstrong, 2008 

(Improved) BLAST 

Altshul, Madden, Schaffer, Zhang, Zhang, Miller & 
Lipman  (1997) Gapped BLAST and PSI-BLAST:a 

new generation of protein database search 
programs. Nucleic Acids Research 25:3389-3402 

•  Improved algorithms allowing gaps 
–  these have superceded the older version of 

BLAST 
–  two versions: Gapped and PSI BLAST 
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(Improved) BLAST Process 

•  Find words or hot-spots 
–  search each diagonal for two w length words 

such that score >=t 
–  future expansion is restricted to just these initial 

words 
– we reduce the threshold t to allow more initial 

words to progress to the next stage 

Armstrong, 2008 

(Improved) BLAST Process 

•  Allow local alignments with gaps 
–  allow the words to merge by introducing gaps 
–  each new alignment comprises two words with 

a number of gaps 
–  unlike FASTA does not restrict the search to a 

narrow band 
–  as only two word hits are expanded this makes 

the new blast about 3x faster 
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PSI-BLAST 

•  Iterative version of BLAST for searching for 
protein domains 
–  Uses a dynamic substitution matrix 
–  Start with a normal blast 
–  Take the results and use these to ‘tweak’ the matrix 
–  Re-run the blast search until no new matches occur 

•  Good for finding distantly related sequences but 
high frequency of false-positive hits 

Armstrong, 2008 

BLAST Programs 
•  blastp  compares an amino acid query sequence against a   

 protein sequence database.  
•  blastn  compares a nucleotide query sequence against a   

 nucleotide sequence database. 
•  blastx  compares a nucleotide query sequence translated in all  

 reading frames against a protein sequence database.  
•  tblastn  compares a protein query sequence  against a 

nucleotide   sequence database dynamically translated in all 
reading   frames.  

•  tblastx  compares the six-frame translations of a nucleotide query  
 sequence against the six-frame translations of a nucleotide  
 sequence database. (SLOW) 
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Armstrong, 2008 

Alignment Heuristics 

•  Dynamic Programming is better but too slow 
•  BLAST (and FASTA) based on several 

assumptions about good alignments 
–  substitutions more likely than gaps 
–  good alignments have runs of identical matches 

•  FASTA good for DNA sequences but slower 
•  BLAST better for amino acid sequences, pretty 

good for DNA, fastest, now dominant. 
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Biological Databases (sequences) 

Armstrong, 2007 Bioinformatics 2 

Biological Databases 

•  Introduction to Sequence Databases 
•  Overview of primary query tools and the 

databases they use (e.g. databases used by 
BLAST and FASTA) 

•  Demonstration of common queries 
•  Interpreting the results 
•  Overview of annotated ‘meta’ or ‘curated’  

databases 
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DNA Sequence Databases 

•  Raw DNA (and RNA) sequence 
•  Submitted by Authors 
•  Patent, EST, Gemomic sequences  
•  Large degree of redundancy 
•  Little annotation 
•  Annotation and Sequence errors! 

Armstrong, 2007 Bioinformatics 2 

Main DNA DBs 

•  Genbank    US 
•  EMBL    EU 
•  DDBJ    Japan 

•  Celera genomics   Commercial DB 
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EMBL 

•  Sources for sequence include: 
– Direct submission - on-line submission tools 
– Genome sequencing projects 
– Scientific Literature - DB curators and editorial 

imposed submission 
– Patent applications 
– Other Genomic Databases, esp Genbank 

Armstrong, 2007 Bioinformatics 2 

International Nucleotide Sequence  

Database Collaboration  
•  Partners are EMBL, Genbank & DDBJ 
•  Each collects sequence from a variety of 

sources 
•  New additions to any of the three databases 

are shared to the others on a daily basis. 
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Limited annotation 

•  Unique accession number 
•  Submitting author(s) 
•  Brief annotation if available 
•  Source (cDNA, EST, genomic etc) 
•  Species 
•  Reference or Patent details 

Armstrong, 2007 Bioinformatics 2 

EMBL file tags 
     ID - identification             (begins each entry; 1 per entry) 
     AC - accession number           (>=1 per entry) 
     SV - new sequence identifier    (>=1 per entry)      
     DT - date                       (2 per entry) 
     DE - description                (>=1 per entry) 
     KW - keyword                    (>=1 per entry) 
     OS - organism species           (>=1 per entry) 
     OC - organism classification    (>=1 per entry) 
     OG - organelle                  (0 or 1 per entry) 
     RN - reference number           (>=1 per entry) 
     RC - reference comment          (>=0 per entry) 
     RP - reference positions        (>=1 per entry) 
     RX - reference cross-reference  (>=0 per entry) 
     RA - reference author(s)        (>=1 per entry) 
     RT - reference title            (>=1 per entry) 
     RL - reference location         (>=1 per entry) 
     DR - database cross-reference   (>=0 per entry) 
     FH - feature table header       (0 or 2 per entry) 
     FT - feature table data         (>=0 per entry) 
     CC - comments or notes          (>=0 per entry) 
     XX - spacer line                (many per entry) 
     SQ - sequence header            (1 per entry) 
     bb - (blanks) sequence data     (>=1 per entry) 
     // - termination line           (ends each entry; 1 per entry)  
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16,759,535,577 bases (27/1/02) 

Armstrong, 2007 Bioinformatics 2 

35,602,556,374 bases (17/1/03) 
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53,958,991,118 bases (24/1/04) 

Armstrong, 2007 Bioinformatics 2 

Jan ‘06   117,599,582,673bp 
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Bases by organism 02 

Armstrong, 2007 Bioinformatics 2 

Bases by organism 03 
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Bases by organism 04 

Armstrong, 2007 Bioinformatics 2 

Bases by organism 06 

other 

human 

mouse 

rat 

http://www3.ebi.ac.uk/Services/DBStats/ 
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17 Subdivisions 
ESTs                    EST 
Bacteriophage           PHG 
Fungi                   FUN 
Genome survey           GSS 
High Throughput cDNA    HTC 
High Throughput Genome  HTG 
Human                   HUM 
Invertebrates           INV 
Mus musculus            MUS 
Organelles              ORG 
Other Mammals           MAM 
Other Vertebrates       VRT 
Plants                  PLN 
Prokaryotes             PRO 
Rodents                 ROD 
STSs                    STS 
Synthetic               SYN 
Unclassified            UNC 
Viruses                 VRL 

Armstrong, 2007 Bioinformatics 2 

ESTs 

•  Expressed Sequence Tags 
–  short mRNA samples from tissues 
–  cloned and sequenced 
–  single read 
–  approx 1/3 of the database 
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HTG 

•  High throughput genomic sequences 
– Partial sequences obtained during genome 

sequencing. 
– Around 1/3 of the database 

Armstrong, 2007 Bioinformatics 2 

Specialist DNA Databases 
•  Usually focus on a single organism or small 

related group 
•  Much higher degree of annotation 
•  Linked more extensively to accessory data 

– Species specific: 
•  Drosophila: FlyBase,  
•  C. elegans: AceDB 

– Other examples include Mitochondrial DNA, 
Parasite Genome DB 
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•  Includes the entire annotated genome 
searchable by BLAST or by text queries 

•  Also includes a detailed ontology or 
standard nomenclature for Drosophila 

•  Also provides information on all literature, 
researchers, mutations, genetic stocks and 
technical resources. 

•  Full mirror at EBI 

flybase.bio.indiana.edu 

Armstrong, 2007 Bioinformatics 2 

Protein DBs 

•  Primary Sequence DBs 
– Swiss-Prot, TrEMBL, GenPept 

•  Protein Structure DBs 
– PDB, MSD 

•  Protein Domain Homology DBs 
–  InterPro, CluSTr 
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UniProtKB/Swiss-Prot 

•  Consists of protein sequence entries 
•  Contains high-quality annotation 
•  Is non-redundant  
•  Cross-referenced to many other databases 
•  104,559 sequences in Jan 02 
•  120,960 sequences in Jan 03 
•  194,317 sequences in Sep 05 (latest) 

Armstrong, 2007 Bioinformatics 2 

Swis-Prot by Species (‘03) 
  ------  ---------  -------------------------------------------- 
  Number  Frequency  Species 
  ------  ---------  -------------------------------------------- 
       1       8950  Homo sapiens (Human) 
       2       6028  Mus musculus (Mouse) 
       3       4891  Saccharomyces cerevisiae (Baker's yeast) 
       4       4835  Escherichia coli 
       5       3403  Rattus norvegicus (Rat) 
       6       2385  Bacillus subtilis 
       7       2286  Caenorhabditis elegans 
       8       2106  Schizosaccharomyces pombe (Fission yeast) 
       9       1836  Arabidopsis thaliana (Mouse-ear cress) 
      10       1773  Haemophilus influenzae 
      11       1730  Drosophila melanogaster (Fruit fly) 
      12       1528  Methanococcus jannaschii 
      13       1471  Escherichia coli O157:H7 
      14       1378  Bos taurus (Bovine) 
      15       1370  Mycobacterium tuberculosis 

~20% 

~13% 
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Swis-Prot by Species (Oct ‘05) 
  ------  ---------  -------------------------------------------- 
  Number  Frequency  Species 
  ------  ---------  -------------------------------------------- 
       1      12860  Homo sapiens (Human) 
       2       9933  Mus musculus (Mouse) 
       3       5139  Saccharomyces cerevisiae (Baker's yeast) 
       4       4846  Escherichia coli 
       5       4570  Rattus norvegicus (Rat) 
       6       3609  Arabidopsis thaliana (Mouse-ear cress) 
       7       2840  Schizosaccharomyces pombe (Fission yeast) 
       8       2814  Bacillus subtilis 
       9       2667  Caenorhabditis elegans 
      10       2273  Drosophila melanogaster (Fruit fly) 
      11       1782  Methanococcus jannaschii 
      12       1772  Haemophilus influenzae 
      13       1758  Escherichia coli O157:H7 
      14       1653  Bos taurus (Bovine) 
      15       1512  Salmonella typhimurium 

Armstrong, 2007 Bioinformatics 2 

UniProtKB/TrEMBL 

•  Computer annotated Protein DB 
•  Translations of all coding sequences in 

EMBL DNA Database 
•  Remove all sequences already in Swiss-Prot 
•  November 01: 636,825 peptides 
•  Jan 17th 2003: 728713 peptides 
•  TrEMBL new is a weekly update 
•  GenPept is the Genbank equivalent 
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SNPs 

•  Biggest growth area right now is in 
mutation databases 

•  www.ncbi.nlm.nih.gov/About/primer/
snps.html 

•  Polymorphisms estimates at between 1:100 
1:300 base pairs (normal human variation) 

•  Databases include true SNPs (single bases) 
and larger variations (microsatellites, small 
indels) 
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dbSNP 

•  “The database grows at 90 SNPs per 
month” 

•  125 versions since start in 1998 
•  Currently 47 million SNPs in v125 
•  15 million added between version 124 and 

125 
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Database Search Methods 

•  Text based searching of annotations and 
related data: SRS, Entrez 

•  Sequence based searching: BLAST, 
FASTA, MPSearch 

Armstrong, 2007 Bioinformatics 2 

SRS 

•  Sequence Retrieval System 
– Powerful search of EMBL annotation 
– Linked to over 80 other data sources 
– Also includes results from automated searches 
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SRS data sources 
•  Primary Sequence: EMBL, SwissProt 
•  References/Literature: Medline 
•  Protein Homology: Prosite, Prints 
•  Sequence Related: Blocks, UTR, Taxonomy 
•  Transcription Factor: TFACTOR, TFSITE 
•  Search Results: BLAST, FASTA, CLUSTALW 
•  Protein Structure: PDB 
•  Also, Mutations, Pathways, other specialist DBs 

Armstrong, 2007 Bioinformatics 2 

Entrez 

•  Text based searching at NCBI’s Genbank 
•  Very simple and easy to use 
•  Not as flexible or extendable as SRS 
•  No user customisation 
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Sequence Based Searching 
•  Queries: 
DNA query against DNA db 
Translated DNA query against  Protein db 
Translated DNA query against translated DNA db  
Translated Protein query against DNA db 
Protein query against Protein db 

•  BLAST & FASTA 

Armstrong, 2007 Bioinformatics 2 

Secondary Databases 

•  PDB 
•  Pfam  
•  PRINTS  
•  PROSITE 
•  ProDom  
•  SMART 
•  TIGRFAMs  
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PDB 

•  Molecular Structure Database (EBI) 
•  Contains the 3D structure coordinates of 

‘solved’ protein sequences 
– X-ray crystallography 
– NMR spectra 

•  19749 protein structures 

Armstrong, 2007 Bioinformatics 2 

Multiple Sequence Alignment 

•  What and Why? 
•  Dynamic Programming Methods 
•  Heuristic Methods 
•  A further look at Protein Domains 
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Multiple Alignment 

•  Normally applied to proteins 
•  Can be used for DNA sequences 
•  Finds the common alignment of >2 

sequences. 
•  Suggests a common evolutionary source 

between related sequences based on 
similarity 
– Can be used to identify sequencing errors 

Armstrong, 2007 Bioinformatics 2 

Multiple Alignment of DNA 

•  Take multiple sequencing runs 
•  Find overlaps 

–  variation of ends-free alignment 

•  Locate cloning or sequencing errors 
•  Derive a consensus sequence 
•  Derive a confidence degree per base 
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Consensus Sequences 

•  Look at several aligned sequences and derive the most 
common base for each position. 
–  Several ways of representing consensus sequences 
–  Many consensus sequences fail to represent the variability at each 

base position. 
–  Largely replaced by Sequence Logos but the term is often mis-

applied 
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Sequence Logos  
•  Example, from an alignment of the TATA box in yeast 

genes: 

We now have a 
confidence level 
for each base at 
each position 
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Multiple Alignment of Proteins 

•  Multiple Alignment of Proteins 
•  Identify Protein Families 
•  Find conserved Protein Domains 
•  Predict evolutionary precursor sequences 
•  Predict evolutionary trees 
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Protein Families 

•  Proteins are complex structures built from 
functional and structural sub-units 
– When studying protein families it is evident 

that some regions are more heavily conserved 
than others. 

– These regions are generally important for the 
structure or function of the protein 

– Multiple alignment can be used to find these 
regions 

– These regions can form a signature to be used 
in identifying the protein family or functional 
domain. 
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Protein Domains 

•  Evolution conserves sequence patterns due 
to functional and structural constraints. 

•  Different methods have been applied to the 
analysis of these regions. 

•  Domains also known by a range of other 
names: 

motifs   patterns  prints  
 blocks 
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Multiple Alignment 

•  OK we now have an idea WHY we want to 
try and do this 

•  What does a multiple alignment look like? 
•  How could we do multiple alignments 
•  What are the practical implications 
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Multiple alignment table 

A consensus character is the one that minimises the distance 
between it and all the other characters in the column  

Conservatived or Identical residues are colour coded 
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Scoring Multiple Alignments 

•  We need to score on columns with more than 2 bases or 
residues: 

S 
C 
A 
P 
P 

( ) ColumnCost    = 24 

Multiple alignments are usually scored on cost/difference 
rather than similarity 
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Column Costs 

•  Several strategies exist for calculating the 
column cost in a multiple alignment 

•  Simplest is to sum the pairwise costs of 
each base/residue pair in the column using a 
matrix (e.g. PAM250). 

•  Gap scoring rules can be applied to these as 
well. 
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Scoring Multiple Alignments 

•  Score = (S,C)+(S,A)+(S,A)+(S,P)+(S,P)+
(C,A)+ (C,P)+(C,P)+(A,P)+(A,P)+(P,P) 

S 
C 
A 
P 
P 

( ) ColumnCost    = 24 

Known as the sum-of-pairs scoring method 
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Sum-of-pairs cost method (SP) 

•  Score = (S,C)+(S,-)+(S,A)+(S,P)+(S,P)+     
  (-,A)+(-,P)+(-,P)+(A,P)+(A,P)+(P,P) 

S 
- 
A 
P 
P 

( ) ColumnCost    = 24 

Still works with gaps using whatever gap penalty you want 
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Multiple Alignment Cost 

•  Sum of pairs is a simple method to get a 
score for each column in a multiple 
alignment 

•  Based on matrices and gap penalties used 
for pairwise sequence alignment 

•  The score of the alignment is the sum of 
each column 
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Optimal Multiple Alignment 

•  The best alignment is generally the one with 
the lowest score (i.e. least difference) 
–  depends on the scoring rules used. 

•  Like pairwise cases, each alignment 
represents a path through a matrix 

•  For multiple alignment, the matrix is n-
dimensional  
– where n=number of sequences 
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(Murata, Richardson and Sussman 1999) 
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Contrasting pairwise and multiple alignments 

Lets compare pairwise with three sequences. 

(0,0) (1,-) 

(-,1) (1,1) 
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Contrasting pairwise and multiple alignments 

Lets compare pairwise with three sequences. 

(0,0) (1,-) 

(-,1) 

(-,-,1) 

(0,0,0) 

(-,1,-) (1,1,-) 

(1,-,-) 

(1,-,1) 

(1,1,1) 
(-,1,1) 
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Multiple alignment table 

The consensus character is the one that minimises the distance 
between it and all the other characters in the column  


