
1

Armstrong, 2008

Sequence Alignment

Armstrong, 2008

Why?

•  Genome sequencing gives us new gene
sequences

•  Network biology gives us functional
information on genes/proteins

•  Analysis of mutants links unknown genes to
diseases

•  Can we learn anything from other known
sequences about our new gene/protein?

2

Armstrong, 2008

Armstrong, 2008

What is it?

ACCGGTATCCTAGGAC

ACCTATCTTAGGAC

Are these two sequences related?
How similar (or dissimilar) are they?

3

Armstrong, 2008

What is it?

ACCGGTATCCTAGGAC

||| |||| ||||||

ACC--TATCTTAGGAC

•  Match the two sequences as closely as possible =
aligned

•  Therefore, alignments need a score

Armstrong, 2008

Why do we care?

•  DNA and Proteins are based on linear sequences
•  Information is encoded in these sequences
•  All bioinformatics at some level comes back to

matching sequences that might have some noise or
variability

4

Armstrong, 2008

Alignment Types

•  Global: used to compare to similar sized
sequences.
– Compare closely related genes
– Search for mutations or polymorphisms

in a sequence compared to a reference.

Armstrong, 2008

Alignment Types

•  Local: used to find shared subsequences.
– Search for protein domains
– Find gene regulatory elements
– Locate a similar gene in a genome

sequence.

5

Armstrong, 2008

Alignment Types

•  Ends Free: used to find joins/overlaps.
– Align the sequences from adjacent

sequencing primers.

Armstrong, 2008

How do we score alignments?

ACCGGTATCCTAGGAC
||| |||| ||||||

ACC--TATCTTAGGAC
•  Assign a score for each match along the

sequence.

6

Armstrong, 2008

How do we score alignments?

ACCGGTATCCTAGGAC
||| |||| ||||||

ACC--TATCTTAGGAC
•  Assign a score (or penalty) for each

substitution.

Armstrong, 2008

How do we score alignments?

ACCGGTATCCTAGGAC
||| |||| ||||||

ACC--TATCTTAGGAC
•  Assign a score (or penalty) for each

insertion or deletion.
•  insertions/deletions otherwise known as

indels

7

Armstrong, 2008

How do we score alignments?

ACCGGTATCCTAGGAC
||| |||| ||||||

ACC--TATCTTAGGAC

•  Matches and substitutions are ‘easy’ to deal
with.
– We’ll look at substitution matrices later.

•  How do we score indels: gaps?

Armstrong, 2008

How do we score gaps?

ACCGGTATCC---GAC
||| |||| |||

ACC--TATCTTAGGAC

•  A gap is a consecutive run of indels
•  The gap length is the number of indels.
•  The simple example here has two gaps of

length 2 and 3

8

Armstrong, 2008

How do we score gaps?

ACCGGTATCC---GAC
||| |||| |||

ACC--TATCTTAGGAC
•  Constant: Length independent weight
•  Affine: Open and Extend weights.
•  Convex: Each additional gap contributes less
•  Arbitrary: Some arbitrary function on length

Armstrong, 2008

Choosing Gap Penalties

•  The choice of Gap Scoring Penalty is very
sensitive to the context in which it is
applied:
–  introns vs exons
–  protein coding regions
– mis-matches in PCR primers

9

Armstrong, 2008

Substitution Matrices

•  Substitution matrices are used to score
substitution events in alignments.

•  Particularly important in Protein sequence
alignments but relevant to DNA sequences
as well.

•  Each scoring matrix represents a particular
theory of evolution

Armstrong, 2008

Similarity/Distance

•  Distance is a measure of the cost or
replacing one residue with another.

•  Similarity is a measure of how similar a
replacement is.

e.g. replacing a hydrophobic residue with a hydrophilic one.

•  The logic behind both are the same and the
scoring matrices are interchangeable.

10

Armstrong, 2008

DNA Matrices
Identity matrix BLAST
 A C G T A C G T
A 1 0 0 0 A 5 –4 –4 -4
C 0 1 0 0 C –4 5 –4 -4
G 0 0 1 0 G –4 –4 5 -4
T 0 0 0 1 T -4 –4 –4 5

However, some changes are more likely to occur than others (even in
DNA). When looking at distance, the ease of mutation is a factor. a.g.
A-T and A-C replacements are rarer than A-G or C-T.

Armstrong, 2008

Protein Substitution Matrices

 How can we score a substitution in an aligned
sequence?

•  Identity matrix like the simple DNA one.
•  Genetic Code Matrix:

 For this, the score is based upon the minimum number of
DNA base changes required to convert one amino acid into
the other.

11

Armstrong, 2008

Armstrong, 2008

Protein Substitution Matrices

 How can we score a substitution in an aligned
sequence?

•  Amino acid property matrix
 Assign arbitrary values to the relatedness of different
amino acids:
 e.g. hydrophobicity , charge, pH, shape, size

12

Armstrong, 2008

Matrices based on Probability

 Sij = log (qij/pipj)

 Sij is the log odds ratio of two probabilities: amino
acids i and j are aligned by evolutionary descent
and the probability that they aligned at random.

 This is the basis for commonly used substitution
matrices.

Armstrong, 2008

PAM matrices

 Dayhoff, Schwarz and Orcutt 1978 took these into
consideration when constructing the PAM
matrices:
 Took 71 protein families - where the sequences
differed by no more than 15% of residues (i.e.
85% identical)
 Aligned these proteins
 Build a theoretical phylogenetic tree
 Predicted the most likely residues in the

 ancestral sequence

13

Armstrong, 2008

PAM Matrices

•  Ignore evolutionary direction
•  Obtained frequencies for residue X being

substituted by residue Y over time period Z

•  Based on 1572 residue changes

•  They defined a substitution matrix as 1 PAM
(point accepted mutation) if the expected number
of substitutions was 1% of the sequence length.

Armstrong, 2008

PAM Matrices

 To increase the distance, they multiplied the
the PAM1 matrix.

 PAM250 is one of the most commonly
used.

14

Armstrong, 2008

PAM - notes

 The PAM matrices are rooted in the original
datasets used to create the theoretical trees

 They work well with closely related sequences

 Based on data where substitutions are most likely
to occur from single base changes in codons.

Armstrong, 2008

PAM - notes

 Biased towards conservative mutations in the DNA
sequence (rather than amino acid substitutions) that
have little effect on function/structure.

 Replacement at any site in the sequence depends
only on the amino acid at that site and the
probability given by the table.This does not
represent evolutionary processes correctly. Distantly
related sequences usually have regions of high
conservation (blocks).

15

Armstrong, 2008

PAM - notes

 36 residue pairs were not observed in the dataset
used to create the original PAM matrix

 A new version of PAM was created in 1992 using
59190 substitutions: Jones, Taylor and Thornton
1992 CAMBIOS 8 pp 275

Armstrong, 2008

BLOSUM matrices

 Henikoff and Henikoff 1991

 Took sets of aligned ungapped regions from protein
families from the BLOCKS database.

 The BLOCKS database contain short protein
sequences of high similarity clustered together.
These are found by applying the MOTIF algorithm
to the SWISS-PROT and other databases. The
current release has 8656 Blocks.

16

Armstrong, 2008

BLOSUM matrices

 Sequences were clustered whenever the %identify
exceeded some percentage level.

 Calculated the frequency of any two residues being
aligned in one cluster also being aligned in another

 Correcting for the size of each cluster.

Armstrong, 2008

BLOSUM matrices

 Resulted in the fraction of observed substitutions
between any two residues over all observed
substitutions.

 The resulting matrices are numbered inversely from
the PAM matrices so the BLOSUM50 matrix was
based on clusters of sequence over 50% identity,
and BLOSUM62 where the clusters were at least
62% identical.

17

Armstrong, 2008

BLOSUM 62 Matrix

Armstrong, 2008

Summary so far…

•  Gaps
–  Indel operations
– Gap scoring methods

•  Substitution matrices
– DNA largely simple matrices
– Protein matrices are based on probability
– PAM and BLOSUM

18

Armstrong, 2008

How do we do it?

•  Like everything else there are several
methods and choices of parameters

•  The choice depends on the question being
asked
– What kind of alignment?
– Which substitution matrix is appropriate?
– What gap-penalty rules are appropriate?
–  Is a heuristic method good enough?

Armstrong, 2008

Working Parameters
•  For proteins, using the affine gap penalty

rule and a substitution matrix:
Query Length Matrix Gap (open/extend)

<35 PAM-30 9,1
35-50 PAM-70 10,1
50-85 BLOSUM-80 10,1
>85 BLOSUM-62 11,1

19

Armstrong, 2008

Alignment Types

•  Global: used to compare to similar sized
sequences.

•  Local: used to find similar subsequences.

•  Ends Free: used to find joins/overlaps.

Armstrong, 2008

Global Alignment

•  Two sequences of similar length
•  Finds the best alignment of the two

sequences
•  Finds the score of that alignment
•  Includes ALL bases from both sequences in

the alignment and the score.

•  Needleman-Wunsch algorithm

20

Armstrong, 2008

Needleman-Wunsch algorithm

•  Gaps are inserted into, or at the ends of each
sequence.

•  The sequence length (bases+gaps) are
identical for each sequence

•  Every base or gap in each sequence is
aligned with a base or a gap in the other
sequence

Armstrong, 2008

Needleman-Wunsch algorithm

•  Consider 2 sequences S and T
•  Sequence S has n elements
•  Sequence T has m elements
•  Gap penalty ?

21

Armstrong, 2008

How do we score gaps?

ACCGGTATCC---GAC
||| |||| |||

ACC--TATCTTAGGAC
•  Constant: Length independent weight
•  Affine: Open and Extend weights.
•  Convex: Each additional gap contributes less
•  Arbitrary: Some arbitrary function on length

– Lets score each gap as –1 times length

Armstrong, 2008

Needleman-Wunsch algorithm

•  Consider 2 sequences S and T
•  Sequence S has n elements
•  Sequence T has m elements
•  Gap penalty –1 per base (arbitrary gap penalty)
•  An alignment between base i in S and a gap in T is

represented: (Si,-)
•  The score for this is represented : σ(Si,-) = -1

22

Armstrong, 2008

Needleman-Wunsch algorithm

•  Substitution/Match matrix for a simple alignment
•  Several models based on probability….

A C G T
A 2 -1 -1 -1
C -1 2 -1 -1
G -1 -1 2 -1
T -1 -1 -1 2

Armstrong, 2008

Needleman-Wunsch algorithm

•  Substitution/Match matrix for a simple alignment
•  Simple identify matrix (2 for match, -1 for

mismatch)
•  An alignment between base i in S and base j in T is

represented: (Si,Tj)
•  The score for this occurring is represented: σ(Si,Tj)

23

Armstrong, 2008

Needleman-Wunsch algorithm

•  Set up a array V of size n+1 by m+1
•  Row 0 and Column 0 represent the cost of adding

gaps to either sequence at the start of the
alignment

•  Calculate the rest of the cells row by row by
finding the optimal route from the surrounding
cells that represent a gap or match/mismatch
–  This is easier to demonstrate than to explain

Armstrong, 2008

Needleman-Wunsch algorithm

–  lets start by trying out a simple example
alignment:

S = ACCGGTAT
T = ACCTATC

24

Armstrong, 2008

Needleman-Wunsch algorithm

–  Get lengths

S = ACCGGTAT
T = ACCTATC

Length of S = m = 8
Length of T = n = 7

 (lengths approx equal so OK for Global Alignment)

Armstrong, 2008

Create array m+1 by n+1
(i.e. 9 by 8)

25

Armstrong, 2008

Add on bases from each sequence
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

Armstrong, 2008

Represent scores for gaps in row/
col 0

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-2

26

Armstrong, 2008

Represent scores for gaps in row/
col 0

-7
-6
-5
-4
-3
-2
-1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2

Armstrong, 2008

For each cell consider the ‘best’
path

-7
-6
-5
-4
-3
-2
-1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2

27

Armstrong, 2008

For each cell consider the ‘best’
path

-1
-1 0

 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-3 -2

(S1,T0) & σ(-,T1) = -1
Running total (-1+-1)=-2

Armstrong, 2008

For each cell consider the ‘best’
path

-1
-1 0

 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-3 -2

(S1,T0) & σ(-,T1) = -1
Running total (-1+-1)=-2

(S0, T1) & σ(S1,-) = -1
Running total (-1+-1)=-2

28

Armstrong, 2008

For each cell consider the ‘best’
path

-1
-1 0

 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-3 -2

(S1,T0) & σ(-,T1) = -1
Running total (-1+-1)=-2

(S0, T1) & σ(S1,-) = -1
Running total (-1+-1)=-2

(S0,T0) & σ(S1,T1) = 2
Running total (0+2)=2

Armstrong, 2008

Choose and record ‘best’ path

2 -1
-1 0

 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-3 -2

29

Armstrong, 2008

Choose and record ‘best’ path

2 -1
-1 0

 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-3 -2

(S2,T0) & σ(-,T1)
Running total (-2+-1)=-3

(S1,T1) & σ(S2,-)
Running total (2+-1)=1

(S1,T0) & σ(S2,T1)
Running total (-1+-1)=-2

1

Armstrong, 2008

Continue….

-7
-6
-5
-4
-3
-2

1 2 -1
-1 0

 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

30

Armstrong, 2008

Continue….

-7
-6
-5
-4
-3

-2 -1 0 1 -2
-5 1 2 -1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

1 4 3 2

Armstrong, 2008

Continue….

-7
-6
-5
-4

1 2 3 4 5 6 3 -3
-2 -1 0 1 -2
-5 1 2 -1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

1 4 3 2
0

31

Armstrong, 2008

Continue….

-7
-6
-5

4 5 6 4 4 5 2 -1 -4
1 2 3 4 5 6 3 -3
-2 -1 0 1 -2
-5 1 2 -1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2008

Continue….

-7
-6

7 8 5 3 4 4 1 -2 -5
4 5 6 4 4 5 2 -1 -4
1 2 3 4 5 6 3 -3
-2 -1 0 1 -2
-5 1 2 -1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

1 4 3 2
0

32

Armstrong, 2008

Continue….

-7
10 7 5 3 3 3 0 -3 -6
7 8 5 3 4 4 1 -2 -5
4 5 6 4 4 5 2 -1 -4
1 2 3 4 5 6 3 -3
-2 -1 0 1 -2
-5 1 2 -1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2008

Finally.

9 6 4 2 2 2 -1 -4 -7
10 7 5 3 3 3 0 -3 -6
7 8 5 3 4 4 1 -2 -5
4 5 6 4 4 5 2 -1 -4
1 2 3 4 5 6 3 -3
-2 -1 0 1 -2
-5 1 2 -1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

1 4 3 2
0

= Score

33

Armstrong, 2008

Finally.

9 6 4 2 2 2 -1 -4 -7
10 7 5 3 3 3 0 -3 -6
7 8 5 3 4 4 1 -2 -5
4 5 6 4 4 5 2 -1 -4
1 2 3 4 5 6 3 -3
-2 -1 0 1 -2
-5 1 2 -1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2008

We recreate the alignment using by following the
pointers back through the array to the origin

9 6 4 2 2 2 -1 -4 -7
10 7 5 3 3 3 0 -3 -6
7 8 5 3 4 4 1 -2 -5
4 5 6 4 4 5 2 -1 -4
1 2 3 4 5 6 3 -3
-2 -1 0 1 -2
-5 1 2 -1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

1 4 3 2
0

34

Armstrong, 2008

9 6 4 2 2 2 -1 -4 -7
10 7 5 3 3 3 0 -3 -6
7 8 5 3 4 4 1 -2 -5
4 5 6 4 4 5 2 -1 -4
1 2 3 4 5 6 3 -3
-2 -1 0 1 -2
-5 1 2 -1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

1 4 3 2
0

 - (S)

 C (T)

Armstrong, 2008

 T- (S)
 |
 TC (T)

9 6 4 2 2 2 -1 -4 -7
10 7 5 3 3 3 0 -3 -6
7 8 5 3 4 4 1 -2 -5
4 5 6 4 4 5 2 -1 -4
1 2 3 4 5 6 3 -3
-2 -1 0 1 -2
-5 1 2 -1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

1 4 3 2
0

35

Armstrong, 2008

 AT- (S)
 ||
 ATC (T)

9 6 4 2 2 2 -1 -4 -7
10 7 5 3 3 3 0 -3 -6
7 8 5 3 4 4 1 -2 -5
4 5 6 4 4 5 2 -1 -4
1 2 3 4 5 6 3 -3
-2 -1 0 1 -2
-5 1 2 -1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2008

 TAT- (S)
 |||
 TATC (T)

9 6 4 2 2 2 -1 -4 -7
10 7 5 3 3 3 0 -3 -6
7 8 5 3 4 4 1 -2 -5
4 5 6 4 4 5 2 -1 -4
1 2 3 4 5 6 3 -3
-2 -1 0 1 -2
-5 1 2 -1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

1 4 3 2
0

36

Armstrong, 2008

 GTAT- (S)
 |||
 -TATC (T)

9 6 4 2 2 2 -1 -4 -7
10 7 5 3 3 3 0 -3 -6
7 8 5 3 4 4 1 -2 -5
4 5 6 4 4 5 2 -1 -4
1 2 3 4 5 6 3 -3
-2 -1 0 1 -2
-5 1 2 -1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2008

 GGTAT- (S)
 |||
 --TATC (T)

9 6 4 2 2 2 -1 -4 -7
10 7 5 3 3 3 0 -3 -6
7 8 5 3 4 4 1 -2 -5
4 5 6 4 4 5 2 -1 -4
1 2 3 4 5 6 3 -3
-2 -1 0 1 -2
-5 1 2 -1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

1 4 3 2
0

37

Armstrong, 2008

 CGGTAT- (S)
 | |||
 C--TATC (T)

9 6 4 2 2 2 -1 -4 -7
10 7 5 3 3 3 0 -3 -6
7 8 5 3 4 4 1 -2 -5
4 5 6 4 4 5 2 -1 -4
1 2 3 4 5 6 3 -3
-2 -1 0 1 -2
-5 1 2 -1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2008

 CCGGTAT- (S)
 || |||
 CC--TATC (T)

9 6 4 2 2 2 -1 -4 -7
10 7 5 3 3 3 0 -3 -6
7 8 5 3 4 4 1 -2 -5
4 5 6 4 4 5 2 -1 -4
1 2 3 4 5 6 3 -3
-2 -1 0 1 -2
-5 1 2 -1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

1 4 3 2
0

38

Armstrong, 2008

 ACCGGTAT- (S)
 ||| |||
 ACC--TATC (T)

9 6 4 2 2 2 -1 -4 -7
10 7 5 3 3 3 0 -3 -6
7 8 5 3 4 4 1 -2 -5
4 5 6 4 4 5 2 -1 -4
1 2 3 4 5 6 3 -3
-2 -1 0 1 -2
-5 1 2 -1

-1 0
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8 -7 -6 -5 -4 -3 -2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2008

Checking the result

•  Our alignment considers ALL bases in each
sequence

•  6 matches = 12 points, 3 gaps = -3 points
•  Score = 9 confirmed.

 ACCGGTAT- (S)
 ||| |||
 ACC--TATC (T)

39

Armstrong, 2008

A bit more formally..
Base conditions: V(i,0) = σ(Sk,-)

V(0,j) = σ(-,Tk) ∑

∑
i

j

k=0

k=0

Recurrence relation: for 1<=i <= n, 1<=j<=m:

V(i,j) = max {

V(i-1,j-1) + σ(Si,Tj)
V(i-1,j) + σ(Si,-)
V(i,j-1) + σ(-,Tj)

Armstrong, 2008

Time Complexity

•  Each cell is dependant on three others and
the two relevant characters in each sequence

•  Hence each cell takes a constant time
•  (n+1) x (m+1) cells

•  Complexity is therefore O(nm)

40

Armstrong, 2008

Space Complexity

•  To calculate each row we need the current row
and the row above only.

•  Therefore to get the score, we need O(n+m) space

•  However, if we need the pointers as well, this
increases to O(nm) space

•  This is a problem for very long sequences
–  think about the size of whole genomes

Armstrong, 2008

Global alignment in linear space

•  Hirschberg 1977 applied a ‘divide and
conquer’ algorithm to Global Alignment to
solve the problem in linear space.

•  Divide the problem into small manageable
chunks

•  The clever bit is finding the chunks

41

Armstrong, 2008

dividing...
Compute matrix V(A,B) saving the values for n/2

th row
 - call this matrix F

Compute matrix V(Ar,Br) saving the values for n/2
th row

 - call this matrix B
Find column k so that the crossing point (n/2,k) satisfies:

 F(n/2,k) + B(n/2,m-k) = F(n,m)

Now we have two much smaller problems:
(0,0) -> (n/2,k) and (n,m) -> (n/2,m-k)

Armstrong, 2008

Hirschberg’s divide and conquer
approach (0,0)

(m,n)

n/2

42

Armstrong, 2008

Complexity

•  After applying Hirschberg’s divide and conquer approach
we get the following:

–  Complexity O(mn)

–  Space O(min(m,n))

•  For the proofs, see D.S. Hirschberg. (1977) Algorithms for
the longest common subsequence problem. J. A.C.M 24:
664-667

Armstrong, 2008

OK where are we?

•  The Needleman-Wunsch algorithm finds the
optimum alignment and the best score.
– NW is a dynamic programming algorithm

•  Space complexity is a problem with NW
•  Addressed by a divide and conquer

algorithm
•  What about local and ends-free alignments?

43

Armstrong, 2008

Smith-Waterman algorithm

•  Between two sequences, find the best two
subsequences and their score.

•  We want to ignore badly matched sequence
•  Use the same types of substitution matrix

and gap penalties
•  Use a modification of the previous dynamic

programming approach.

Armstrong, 2008

Smith-Waterman algorithm

•  If Si matches Tj then σ(Si,Tj) >=0
•  If they do not match or represent a gap then <=0

•  Lowest allowable value of any cell is 0
•  Find the cell with the highest value (i,j) and extend

the alignment back to the first zero value
•  The score of the alignment is the value in that cell
•  A quick example if best...

44

Armstrong, 2008

min value of any cell is 0

0
0
0
0
0
0
0

0 0 0 0 0 0 0 0 0
 A C C G G T A T (S)

T

T

G

T

A

T

C

(T)

Armstrong, 2008

min value of any cell is 0

0
0
0
0
0

3 1 2 0 0 0 0 0 0
2 1 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 A C C G G T A T (S)

T

T

G

T

A

T

C

(T)

45

Armstrong, 2008

min value of any cell is 0

7 4 1 2 3 4 3 0 0
8 5 2 0 0 0 1 1 0
5 6 3 0 0 0 1 2 0
3 3 4 1 1 0 0 0 0
2 1 1 2 2 0 0 0 0
3 1 2 0 0 0 0 0 0
2 1 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 A C C G G T A T (S)

T

T

G

T

A

T

C

(T)

Armstrong, 2008

Find biggest cell and map alignment
from there

7 4 1 2 3 4 3 0 0
8 5 2 0 0 0 1 1 0
5 6 3 0 0 0 1 2 0
3 3 4 1 1 0 0 0 0
2 1 1 2 2 0 0 0 0
3 1 2 0 0 0 0 0 0
2 1 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 A C C G G T A T (S)

T

T

G

T

A

T

C

(T)

46

Armstrong, 2008

GTAT(S)
||||
GTAT(T)

7 4 1 2 3 4 3 0 0
8 5 2 0 0 0 1 1 0
5 6 3 0 0 0 1 2 0
3 3 4 1 1 0 0 0 0
2 1 1 2 2 0 0 0 0
3 1 2 0 0 0 0 0 0
2 1 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 A C C G G T A T (S)

T

T

G

T

A

T

C

(T)

Armstrong, 2008

Smith-Waterman cont’d

•  Complexity
–  Time is O(nm) as in global alignments
–  Space is O(nm) as in global alignments

–  A mod of Hirschbergs algorithm allows O(n+m) (n
+m) as two rows need to be stored at a time instead of
one as in the global alignment.

47

Armstrong, 2008

A bit more formally..
Base conditions: ∀i,j. V(i,0) = 0, V(0,j) = 0

Recurrence relation: for 1<=i <= n, 1<=j<=m:

V(i,j) = max {

0
V(i-1,j-1) + σ(Si,Tj)
V(i-1,j) + σ(Si,-)
V(i,j-1) + σ(-,Tj)

Compute i* and j* V(i *,j *) = max 1<=i<=n,1<=j<=m V(i,j)

Armstrong, 2008

Ends-free alignment

•  Find the overlap between two sequences such start
the start of one overlaps is in the alignment and
the end of the other is in the alignment.

•  Essential to DNA sequencing strategies.
–  Building genome fragments out of shorter sequencing

data.
•  Another variant of the Global Alignment Problem

48

Armstrong, 2008

Ends-free alignment

•  Set the initial conditions to zero weight
–  allow indels/gaps at the ends without penalty

•  Fill the array/table using the same recursion
model used in global/local alignment

•  Find the best alignment that ends in one row
or column
–  trace this back

Armstrong, 2008

min value row0 & col0 is 0

5 5 5 6 4 4 1 0 0
6 5 6 4 4 5 2 -1 0
7 4 3 4 5 3 3 0 0
8 5 2 1 2 3 4 1 0
5 6 3 0 0 0 1 2 0
2 3 4 1 0 1 1 -1 0
-1 0 1 2 -1 -1 -1 -1 0
0 0 0 0 0 0 0 0 0

 G T T A C T G T (S)

C

T

G

T

A

T

C

(T)

49

Armstrong, 2008

Find the best ‘end’ point in an end col or
row

5 5 5 6 4 4 1 0 0
6 5 6 4 4 5 2 -1 0
7 4 3 4 5 3 3 0 0
8 5 2 1 2 3 4 1 0
5 6 3 0 0 0 1 2 0
2 3 4 1 0 1 1 -1 0
-1 0 1 2 -1 -1 -1 -1 0
0 0 0 0 0 0 0 0 0

 G T T A C T G T (S)

C

T

G

T

A

T

C

(T)

Armstrong, 2008

Trace the best route from there to the
origin and end

5 5 5 6 4 4 1 0 0
6 5 6 4 4 5 2 -1 0
7 4 3 4 5 3 3 0 0
8 5 2 1 2 3 4 1 0
5 6 3 0 0 0 1 2 0
2 3 4 1 0 1 1 -1 0
-1 0 1 2 -1 -1 -1 -1 0
0 0 0 0 0 0 0 0 0

 G T T A C T G T (S)

C

T

G

T

A

T

C

(T)

50

Armstrong, 2008

GTTACTGT---(S)
 ||||
----CTGTATC(T)

5 5 5 6 4 4 1 0 0
6 5 6 4 4 5 2 -1 0
7 4 3 4 5 3 3 0 0
8 5 2 1 2 3 4 1 0
5 6 3 0 0 0 1 2 0
2 3 4 1 0 1 1 -1 0
-1 0 1 2 -1 -1 -1 -1 0
0 0 0 0 0 0 0 0 0

 G T T A C T G T (S)

C

T

G

T

A

T

C

(T)

Armstrong, 2008

A bit more formally..
Base conditions: ∀i,j. V(i,0) = 0, V(0,j) = 0

Recurrence relation: for 1<=i <= n, 1<=j<=m:

V(i,j) = max {

V(i-1,j-1) + σ(Si,Tj)
V(i-1,j) + σ(Si,-)
V(i,j-1) + σ(-,Tj)

Search for i* such that: V(i*,m)=max1<=i<=n,m V(i,j)
Search for j* such that: V(n,j*)=max1<=j<=n,m V(i,j)

Define alignment score V(S,T) = max { V(n,j*)
V(i*,m)

51

Armstrong, 2008

Summary so far...

•  Dynamic programming algorithms can
solve global, local and ends-free alignment

•  They give the optimum score and alignment
using the parameters given

•  Divide and conquer approaches make the
space complexity manageable for small-
medium sized sequences

Armstrong, 2008

Dynamic Programming Issues

•  For huge sequences, even linear space constraints
are a problem.

•  We used a very simple gap penalty
•  The Affine Gap penalty is most commonly used.

–  Cost to open a gap
–  Cost to extend an open gap

•  Need to track and evaluate the ‘gap’ state in the
array

52

Armstrong, 2008

Tracking the gap state

•  We can model the matches and gap
insertions as a finite state machine:

Taken from Durbin, chapter 2.4

Armstrong, 2008

Tracking the gap state

•  Working along the alignment process...

Taken from Durbin, chapter 2.4

53

Armstrong, 2008

•  When searching multiple genomes, the sizes still
get too big!

•  Several approaches have been tried:
•  Use huge parallel hardware:

–  Distribute the problem over many CPUs
–  Very expensive

•  Implement in Hardware
–  Cost of specialist boards is high
–  Has been done for Smith-Waterman on SUN

Real Life Sequence Alignment

Armstrong, 2008

•  Use a Heuristic Method
– Faster than ‘exact’ algorithms
– Give an approximate solution
– Software based therefore cheap

•  Based on a number of assumptions:

Real Life Sequence Alignment

54

Armstrong, 2008

Assumptions for Heuristic
Approaches

•  Even linear time complexity is a problem
for large genomes

•  Databases can often be pre-processed to a
degree

•  Substitutions more likely than gaps
•  Homologous sequences contain a lot of

substitutions without gaps which can be
used to help find start points in alignments

Armstrong, 2008

Conclusions

•  Dynamic programming algorithms are
expensive but they give you the optimum
alignment and exact score

•  Choice of GAP penalty and substitution
matrix are critically important

•  Heuristic approaches are generally required
for high throughput or very large alignments

55

Armstrong, 2008

Heuristic Methods

•  FASTA
•  BLAST
•  Gapped BLAST
•  PSI-BLAST

Armstrong, 2008

Assumptions for Heuristic
Approaches

•  Even linear time complexity is a problem
for large genomes

•  Databases can often be pre-processed to a
degree

•  Substitutions more likely than gaps
•  Homologous sequences contain a lot of

substitutions without gaps which can be
used to help find start points in alignments

56

Armstrong, 2008

BLAST

Altschul, Gish, Miller, Myers and Lipman (1990) Basic
local alignment search tool. J Mol Biol 215:403-410

•  Developed on the ideas of FASTA
–  uses short identical matches to reduce search =

hotspot
•  Integrates the substitution matrix in the first stage

of finding the hot spots
•  Faster hot spot finding

Armstrong, 2008

BLAST definitions

•  Given two strings S1 and S2
•  A segment pair is a pair of equal lengths

substrings of S1 and S2 aligned without gaps
•  A locally maximal segment is a segment whose

alignment score (without gaps) cannot be
improved by extending or shortening it.

•  A maximum segment pair (MSP) in S1 and S2 is a
segment pair with the maximum score over all
segment pairs.

57

Armstrong, 2008

BLAST Process

•  Parameters:
– w: word length (substrings)
–  t: threshold for selecting interesting alignment

scores

Armstrong, 2008

BLAST Process

•  1. Find all the w-length substrings from the
database with an alignment score >t
–  Each of these (similar to a hot spot in FASTA) is called

a hit
–  Does not have to be identical
–  Scored using substitution matrix and score compared to

the threshold t (which determines number found)
–  Words size can therefore be longer without losing

sensitivity: AA - 3-7 and DNA ~12

58

Armstrong, 2008

BLAST Process

•  2. Extend hits:
–  extend each hit to a local maximal segment
–  extension of initial w size hit may increase or decrease

the score
–  terminate extension when a threshold is exceeded
–  find the best ones (HSP)

•  This first version of Blast did not allow gaps….

Armstrong, 2008

(Improved) BLAST

Altshul, Madden, Schaffer, Zhang, Zhang, Miller &
Lipman (1997) Gapped BLAST and PSI-BLAST:a

new generation of protein database search
programs. Nucleic Acids Research 25:3389-3402

•  Improved algorithms allowing gaps
–  these have superceded the older version of

BLAST
–  two versions: Gapped and PSI BLAST

59

Armstrong, 2008

(Improved) BLAST Process

•  Find words or hot-spots
–  search each diagonal for two w length words

such that score >=t
–  future expansion is restricted to just these initial

words
– we reduce the threshold t to allow more initial

words to progress to the next stage

Armstrong, 2008

(Improved) BLAST Process

•  Allow local alignments with gaps
–  allow the words to merge by introducing gaps
–  each new alignment comprises two words with

a number of gaps
–  unlike FASTA does not restrict the search to a

narrow band
–  as only two word hits are expanded this makes

the new blast about 3x faster

60

Armstrong, 2008

PSI-BLAST

•  Iterative version of BLAST for searching for
protein domains
–  Uses a dynamic substitution matrix
–  Start with a normal blast
–  Take the results and use these to ‘tweak’ the matrix
–  Re-run the blast search until no new matches occur

•  Good for finding distantly related sequences but
high frequency of false-positive hits

Armstrong, 2008

BLAST Programs
•  blastp compares an amino acid query sequence against a

 protein sequence database.
•  blastn compares a nucleotide query sequence against a

 nucleotide sequence database.
•  blastx compares a nucleotide query sequence translated in all

 reading frames against a protein sequence database.
•  tblastn compares a protein query sequence against a

nucleotide sequence database dynamically translated in all
reading frames.

•  tblastx compares the six-frame translations of a nucleotide query
 sequence against the six-frame translations of a nucleotide
 sequence database. (SLOW)

61

Armstrong, 2008

Armstrong, 2008

Alignment Heuristics

•  Dynamic Programming is better but too slow
•  BLAST (and FASTA) based on several

assumptions about good alignments
–  substitutions more likely than gaps
–  good alignments have runs of identical matches

•  FASTA good for DNA sequences but slower
•  BLAST better for amino acid sequences, pretty

good for DNA, fastest, now dominant.

62

Armstrong, 2007 Bioinformatics 2

Biological Databases (sequences)

Armstrong, 2007 Bioinformatics 2

Biological Databases

•  Introduction to Sequence Databases
•  Overview of primary query tools and the

databases they use (e.g. databases used by
BLAST and FASTA)

•  Demonstration of common queries
•  Interpreting the results
•  Overview of annotated ‘meta’ or ‘curated’

databases

63

Armstrong, 2007 Bioinformatics 2

DNA Sequence Databases

•  Raw DNA (and RNA) sequence
•  Submitted by Authors
•  Patent, EST, Gemomic sequences
•  Large degree of redundancy
•  Little annotation
•  Annotation and Sequence errors!

Armstrong, 2007 Bioinformatics 2

Main DNA DBs

•  Genbank US
•  EMBL EU
•  DDBJ Japan

•  Celera genomics Commercial DB

64

Armstrong, 2007 Bioinformatics 2

EMBL

•  Sources for sequence include:
– Direct submission - on-line submission tools
– Genome sequencing projects
– Scientific Literature - DB curators and editorial

imposed submission
– Patent applications
– Other Genomic Databases, esp Genbank

Armstrong, 2007 Bioinformatics 2

International Nucleotide Sequence

Database Collaboration
•  Partners are EMBL, Genbank & DDBJ
•  Each collects sequence from a variety of

sources
•  New additions to any of the three databases

are shared to the others on a daily basis.

65

Armstrong, 2007 Bioinformatics 2

Limited annotation

•  Unique accession number
•  Submitting author(s)
•  Brief annotation if available
•  Source (cDNA, EST, genomic etc)
•  Species
•  Reference or Patent details

Armstrong, 2007 Bioinformatics 2

EMBL file tags
 ID - identification (begins each entry; 1 per entry)
 AC - accession number (>=1 per entry)
 SV - new sequence identifier (>=1 per entry)
 DT - date (2 per entry)
 DE - description (>=1 per entry)
 KW - keyword (>=1 per entry)
 OS - organism species (>=1 per entry)
 OC - organism classification (>=1 per entry)
 OG - organelle (0 or 1 per entry)
 RN - reference number (>=1 per entry)
 RC - reference comment (>=0 per entry)
 RP - reference positions (>=1 per entry)
 RX - reference cross-reference (>=0 per entry)
 RA - reference author(s) (>=1 per entry)
 RT - reference title (>=1 per entry)
 RL - reference location (>=1 per entry)
 DR - database cross-reference (>=0 per entry)
 FH - feature table header (0 or 2 per entry)
 FT - feature table data (>=0 per entry)
 CC - comments or notes (>=0 per entry)
 XX - spacer line (many per entry)
 SQ - sequence header (1 per entry)
 bb - (blanks) sequence data (>=1 per entry)
 // - termination line (ends each entry; 1 per entry)

66

Armstrong, 2007 Bioinformatics 2

16,759,535,577 bases (27/1/02)

Armstrong, 2007 Bioinformatics 2

35,602,556,374 bases (17/1/03)

67

Armstrong, 2007 Bioinformatics 2

53,958,991,118 bases (24/1/04)

Armstrong, 2007 Bioinformatics 2

Jan ‘06 117,599,582,673bp

68

Armstrong, 2007 Bioinformatics 2

Bases by organism 02

Armstrong, 2007 Bioinformatics 2

Bases by organism 03

69

Armstrong, 2007 Bioinformatics 2

Bases by organism 04

Armstrong, 2007 Bioinformatics 2

Bases by organism 06

other

human

mouse

rat

http://www3.ebi.ac.uk/Services/DBStats/

70

Armstrong, 2007 Bioinformatics 2

17 Subdivisions
ESTs EST
Bacteriophage PHG
Fungi FUN
Genome survey GSS
High Throughput cDNA HTC
High Throughput Genome HTG
Human HUM
Invertebrates INV
Mus musculus MUS
Organelles ORG
Other Mammals MAM
Other Vertebrates VRT
Plants PLN
Prokaryotes PRO
Rodents ROD
STSs STS
Synthetic SYN
Unclassified UNC
Viruses VRL

Armstrong, 2007 Bioinformatics 2

ESTs

•  Expressed Sequence Tags
–  short mRNA samples from tissues
–  cloned and sequenced
–  single read
–  approx 1/3 of the database

71

Armstrong, 2007 Bioinformatics 2

HTG

•  High throughput genomic sequences
– Partial sequences obtained during genome

sequencing.
– Around 1/3 of the database

Armstrong, 2007 Bioinformatics 2

Specialist DNA Databases
•  Usually focus on a single organism or small

related group
•  Much higher degree of annotation
•  Linked more extensively to accessory data

– Species specific:
•  Drosophila: FlyBase,
•  C. elegans: AceDB

– Other examples include Mitochondrial DNA,
Parasite Genome DB

72

Armstrong, 2007 Bioinformatics 2

•  Includes the entire annotated genome
searchable by BLAST or by text queries

•  Also includes a detailed ontology or
standard nomenclature for Drosophila

•  Also provides information on all literature,
researchers, mutations, genetic stocks and
technical resources.

•  Full mirror at EBI

flybase.bio.indiana.edu

Armstrong, 2007 Bioinformatics 2

Protein DBs

•  Primary Sequence DBs
– Swiss-Prot, TrEMBL, GenPept

•  Protein Structure DBs
– PDB, MSD

•  Protein Domain Homology DBs
–  InterPro, CluSTr

73

Armstrong, 2007 Bioinformatics 2

UniProtKB/Swiss-Prot

•  Consists of protein sequence entries
•  Contains high-quality annotation
•  Is non-redundant
•  Cross-referenced to many other databases
•  104,559 sequences in Jan 02
•  120,960 sequences in Jan 03
•  194,317 sequences in Sep 05 (latest)

Armstrong, 2007 Bioinformatics 2

Swis-Prot by Species (‘03)
 ------ --------- --
 Number Frequency Species
 ------ --------- --
 1 8950 Homo sapiens (Human)
 2 6028 Mus musculus (Mouse)
 3 4891 Saccharomyces cerevisiae (Baker's yeast)
 4 4835 Escherichia coli
 5 3403 Rattus norvegicus (Rat)
 6 2385 Bacillus subtilis
 7 2286 Caenorhabditis elegans
 8 2106 Schizosaccharomyces pombe (Fission yeast)
 9 1836 Arabidopsis thaliana (Mouse-ear cress)
 10 1773 Haemophilus influenzae
 11 1730 Drosophila melanogaster (Fruit fly)
 12 1528 Methanococcus jannaschii
 13 1471 Escherichia coli O157:H7
 14 1378 Bos taurus (Bovine)
 15 1370 Mycobacterium tuberculosis

~20%

~13%

74

Armstrong, 2007 Bioinformatics 2

Swis-Prot by Species (Oct ‘05)
 ------ --------- --
 Number Frequency Species
 ------ --------- --
 1 12860 Homo sapiens (Human)
 2 9933 Mus musculus (Mouse)
 3 5139 Saccharomyces cerevisiae (Baker's yeast)
 4 4846 Escherichia coli
 5 4570 Rattus norvegicus (Rat)
 6 3609 Arabidopsis thaliana (Mouse-ear cress)
 7 2840 Schizosaccharomyces pombe (Fission yeast)
 8 2814 Bacillus subtilis
 9 2667 Caenorhabditis elegans
 10 2273 Drosophila melanogaster (Fruit fly)
 11 1782 Methanococcus jannaschii
 12 1772 Haemophilus influenzae
 13 1758 Escherichia coli O157:H7
 14 1653 Bos taurus (Bovine)
 15 1512 Salmonella typhimurium

Armstrong, 2007 Bioinformatics 2

UniProtKB/TrEMBL

•  Computer annotated Protein DB
•  Translations of all coding sequences in

EMBL DNA Database
•  Remove all sequences already in Swiss-Prot
•  November 01: 636,825 peptides
•  Jan 17th 2003: 728713 peptides
•  TrEMBL new is a weekly update
•  GenPept is the Genbank equivalent

75

Armstrong, 2007 Bioinformatics 2

SNPs

•  Biggest growth area right now is in
mutation databases

•  www.ncbi.nlm.nih.gov/About/primer/
snps.html

•  Polymorphisms estimates at between 1:100
1:300 base pairs (normal human variation)

•  Databases include true SNPs (single bases)
and larger variations (microsatellites, small
indels)

Armstrong, 2007 Bioinformatics 2

dbSNP

•  “The database grows at 90 SNPs per
month”

•  125 versions since start in 1998
•  Currently 47 million SNPs in v125
•  15 million added between version 124 and

125

76

Armstrong, 2007 Bioinformatics 2

Database Search Methods

•  Text based searching of annotations and
related data: SRS, Entrez

•  Sequence based searching: BLAST,
FASTA, MPSearch

Armstrong, 2007 Bioinformatics 2

SRS

•  Sequence Retrieval System
– Powerful search of EMBL annotation
– Linked to over 80 other data sources
– Also includes results from automated searches

77

Armstrong, 2007 Bioinformatics 2

SRS data sources
•  Primary Sequence: EMBL, SwissProt
•  References/Literature: Medline
•  Protein Homology: Prosite, Prints
•  Sequence Related: Blocks, UTR, Taxonomy
•  Transcription Factor: TFACTOR, TFSITE
•  Search Results: BLAST, FASTA, CLUSTALW
•  Protein Structure: PDB
•  Also, Mutations, Pathways, other specialist DBs

Armstrong, 2007 Bioinformatics 2

Entrez

•  Text based searching at NCBI’s Genbank
•  Very simple and easy to use
•  Not as flexible or extendable as SRS
•  No user customisation

78

Armstrong, 2007 Bioinformatics 2

Sequence Based Searching
•  Queries:
DNA query against DNA db
Translated DNA query against Protein db
Translated DNA query against translated DNA db
Translated Protein query against DNA db
Protein query against Protein db

•  BLAST & FASTA

Armstrong, 2007 Bioinformatics 2

Secondary Databases

•  PDB
•  Pfam
•  PRINTS
•  PROSITE
•  ProDom
•  SMART
•  TIGRFAMs

79

Armstrong, 2007 Bioinformatics 2

PDB

•  Molecular Structure Database (EBI)
•  Contains the 3D structure coordinates of

‘solved’ protein sequences
– X-ray crystallography
– NMR spectra

•  19749 protein structures

Armstrong, 2007 Bioinformatics 2

Multiple Sequence Alignment

•  What and Why?
•  Dynamic Programming Methods
•  Heuristic Methods
•  A further look at Protein Domains

80

Armstrong, 2007 Bioinformatics 2

Multiple Alignment

•  Normally applied to proteins
•  Can be used for DNA sequences
•  Finds the common alignment of >2

sequences.
•  Suggests a common evolutionary source

between related sequences based on
similarity
– Can be used to identify sequencing errors

Armstrong, 2007 Bioinformatics 2

Multiple Alignment of DNA

•  Take multiple sequencing runs
•  Find overlaps

–  variation of ends-free alignment

•  Locate cloning or sequencing errors
•  Derive a consensus sequence
•  Derive a confidence degree per base

81

Armstrong, 2007 Bioinformatics 2

Consensus Sequences

•  Look at several aligned sequences and derive the most
common base for each position.
–  Several ways of representing consensus sequences
–  Many consensus sequences fail to represent the variability at each

base position.
–  Largely replaced by Sequence Logos but the term is often mis-

applied

Armstrong, 2007 Bioinformatics 2

Sequence Logos
•  Example, from an alignment of the TATA box in yeast

genes:

We now have a
confidence level
for each base at
each position

82

Armstrong, 2007 Bioinformatics 2

Multiple Alignment of Proteins

•  Multiple Alignment of Proteins
•  Identify Protein Families
•  Find conserved Protein Domains
•  Predict evolutionary precursor sequences
•  Predict evolutionary trees

Armstrong, 2007 Bioinformatics 2

Protein Families

•  Proteins are complex structures built from
functional and structural sub-units
– When studying protein families it is evident

that some regions are more heavily conserved
than others.

– These regions are generally important for the
structure or function of the protein

– Multiple alignment can be used to find these
regions

– These regions can form a signature to be used
in identifying the protein family or functional
domain.

83

Armstrong, 2007 Bioinformatics 2

Protein Domains

•  Evolution conserves sequence patterns due
to functional and structural constraints.

•  Different methods have been applied to the
analysis of these regions.

•  Domains also known by a range of other
names:

motifs patterns prints
 blocks

Armstrong, 2007 Bioinformatics 2

Multiple Alignment

•  OK we now have an idea WHY we want to
try and do this

•  What does a multiple alignment look like?
•  How could we do multiple alignments
•  What are the practical implications

84

Armstrong, 2007 Bioinformatics 2

Multiple alignment table

A consensus character is the one that minimises the distance
between it and all the other characters in the column

Conservatived or Identical residues are colour coded

Armstrong, 2007 Bioinformatics 2

Scoring Multiple Alignments

•  We need to score on columns with more than 2 bases or
residues:

S
C
A
P
P

() ColumnCost = 24

Multiple alignments are usually scored on cost/difference
rather than similarity

85

Armstrong, 2007 Bioinformatics 2

Column Costs

•  Several strategies exist for calculating the
column cost in a multiple alignment

•  Simplest is to sum the pairwise costs of
each base/residue pair in the column using a
matrix (e.g. PAM250).

•  Gap scoring rules can be applied to these as
well.

Armstrong, 2007 Bioinformatics 2

Scoring Multiple Alignments

•  Score = (S,C)+(S,A)+(S,A)+(S,P)+(S,P)+
(C,A)+ (C,P)+(C,P)+(A,P)+(A,P)+(P,P)

S
C
A
P
P

() ColumnCost = 24

Known as the sum-of-pairs scoring method

86

Armstrong, 2007 Bioinformatics 2

Sum-of-pairs cost method (SP)

•  Score = (S,C)+(S,-)+(S,A)+(S,P)+(S,P)+
 (-,A)+(-,P)+(-,P)+(A,P)+(A,P)+(P,P)

S
-
A
P
P

() ColumnCost = 24

Still works with gaps using whatever gap penalty you want

Armstrong, 2007 Bioinformatics 2

Multiple Alignment Cost

•  Sum of pairs is a simple method to get a
score for each column in a multiple
alignment

•  Based on matrices and gap penalties used
for pairwise sequence alignment

•  The score of the alignment is the sum of
each column

87

Armstrong, 2007 Bioinformatics 2

Optimal Multiple Alignment

•  The best alignment is generally the one with
the lowest score (i.e. least difference)
–  depends on the scoring rules used.

•  Like pairwise cases, each alignment
represents a path through a matrix

•  For multiple alignment, the matrix is n-
dimensional
– where n=number of sequences

Armstrong, 2007 Bioinformatics 2

(Murata, Richardson and Sussman 1999)

88

Armstrong, 2007 Bioinformatics 2

Contrasting pairwise and multiple alignments

Lets compare pairwise with three sequences.

(0,0) (1,-)

(-,1) (1,1)

Armstrong, 2007 Bioinformatics 2

Contrasting pairwise and multiple alignments

Lets compare pairwise with three sequences.

(0,0) (1,-)

(-,1)

(-,-,1)

(0,0,0)

(-,1,-) (1,1,-)

(1,-,-)

(1,-,1)

(1,1,1)
(-,1,1)

89

Armstrong, 2007 Bioinformatics 2

Multiple alignment table

The consensus character is the one that minimises the distance
between it and all the other characters in the column

