
Bioinformatics 2

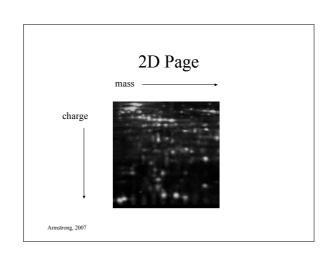
From genomics & proteomics to biological networks

Armstrong, 2007

Biological Profiling

- · Microarrays
 - cDNA arrays
 - oligonucleotide arrays
 - whole genome arrays
- Proteomics
 - yeast two hybrid
 - PAGE techniques

Armstrong, 2007

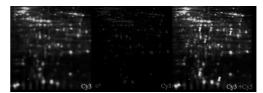

How to build a protein network

- · What is there
- High throughput 2D PAGE
- · Automatic analysis of 2D Page
- · How is it connected
- · Yeast two hybrid screening
- · Building and analysing the network
- · An example

Armstrong, 2007

Proteomics - PAGE techniques

- Proteins can be run through a poly acrylamide gel (similar to that used to seqparate DNA molecules).
- Can be separated based on charge or mass.
- 2D Page separates a protein extract in two dimensions.



DiGE

- We want to compare two protein extracts in the way we can compare two mRNA extracts from two paired samples
- Differential Gel Electrophoresis
- Take two protein extracts, label one green and one red (Cy3 and Cy5)

Armstrong, 2007

DiGE

• The ratio of green:red shows the ratio of the protein across the samples.

Armstrong, 2007

Identifying a protein 'blob'

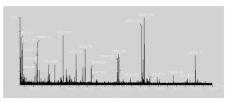
- Unlike DNA microarrays, we do not normally know the identify of each 'spot' or blob on a protein gel.
- We do know two things about the proteins that comprise a blob:
 - mass

- charge

Armstrong, 2007

Identifying a protein 'blob'

- Mass and Charge are themselves insufficient for positive identification.
- Recover from selected blobs the protein (this can be automated)
- Trypsin digest the proteins extracted from the blob (chops into small pieces)


Armstrong, 200

Identifying a protein 'blob'

- Take the small pieces and run through a mass spectrometer. This gives an accurate measurement of the weight of each.
- The total weight and mass of trypsin digested fragments is often enough to identify a protein.
- The mass spec is known as a MALDI-TOFF

Armstrong, 200

Identifying a protein 'blob'

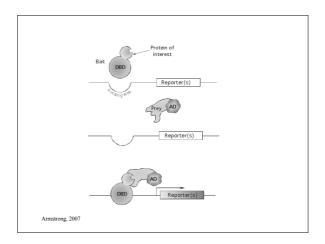
MALDI-TOFF output from myosin Good for rapid identification of single proteins. Does not work well with protein mixtures.

Identifying a protein 'blob'

- When MALDI derived information is insufficient. Need peptide sequence:
- Q-TOF allows short fragments of peptide sequences to be obtained.
- We now have a total mass for the protein, an exact mass for each trypsin fragment and some partial amino acid sequence for these fragments.

Armstrong, 2007

Yeast two hybrid

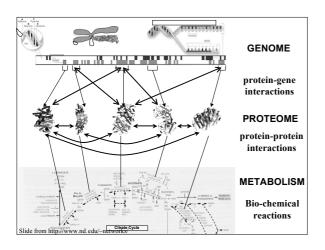

- Use two mating strains of yeast
- In one strain fuse one set of genes to a transcription factor DNA binding site
- In the other strain fuse the other set of genes to a transcriptional activating domain
- Where the two proteins bind, you get a functional transcription factor.

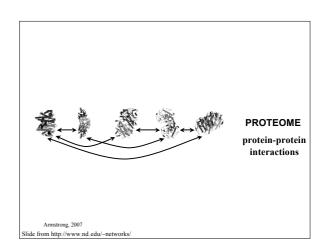
Armstrong, 2007

How to build a protein network

- · What is there
- High throughput 2D PAGE
- · Automatic analysis of 2D Page
- · How is it connected
- · Yeast two hybrid screening
- Building and analysing the network
- · An example

Armstrong, 2007

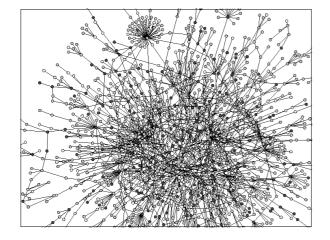

Data obtained

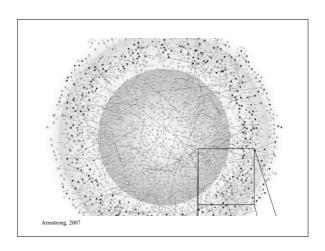

- Depending on sample, you get a profile of potential protein-protein interactions that can be used to predict functional protein complexes.
- False positives are frequent.
- Can be confirmed by affinity purification etc.

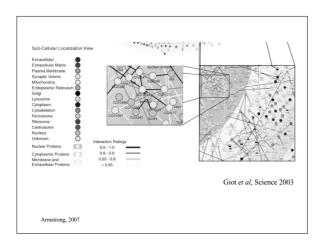
Armstrong, 2007

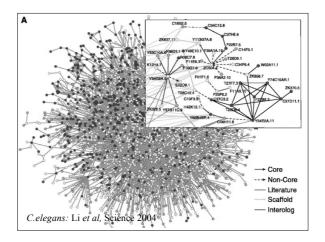
How to build a protein network

- · What is there
- High throughput 2D PAGE
- · Automatic analysis of 2D Page
- · How is it connected
- · Yeast two hybrid screening
- Building and analysing the network
- · An example

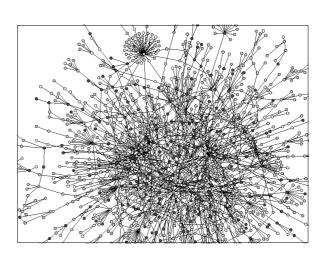

Protein Networks


Armstrong, 2007


Protein Networks


- Networks derived from high throughput yeast 2 hybrid techniques

 - yeastDrosophila melanogaster
 - C.elegans
- Predictive value of reconstructed networks
- · Sub-clusters and sub-architecture
- Comparison with known sub-networks, pathways and protein complexes

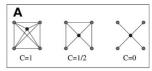

Predictive value of networks

Jeong et al., (2001) Lethality and Centrality in protein networks. Nature 411 p41

- In the yeast genome, the essential vs. unessential genes are known
- Rank the most connected genes
- · Compare known lethal genes with rank order

k	fraction	%lethal
<6	93%	21%
>15	0.7%	62%

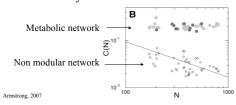
Armstrong, 2007


What about known complexes?

- OK, scale free networks are neat but how do all the different functional complexes fit into a scale free proteome arrangement?
 - e.g. ion channels, ribosome complexes etc?
- Is there substructure within scale free networks?
 - Examine the clustering co-efficient for each node.

Armstrong, 200

Clustering co-efficients and networks.


- $C_i = 2n/k_i(k_i-1)$
- n is the number of direct links connecting the k_i nearest neighbours of node i
- A node at the centre of a fully connected cluster has a C of 1



Clustering co-efficients and networks.

Ravasz et al.,(2002) Hierarchical Organisation of Modularity in Metabolic Networks. Science 297, 1551-1555

• The modularity (ave C) of the metabolic networks is an order of magnitude higher than for truly scale free networks.

Clustering on C

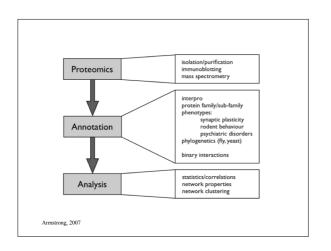
• Clustering on the basis of C allows us to rebuild the sub-domains of the network

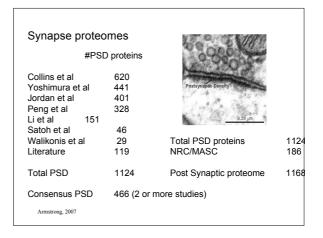
• Producing a tree can predict functional clustered arrangements.

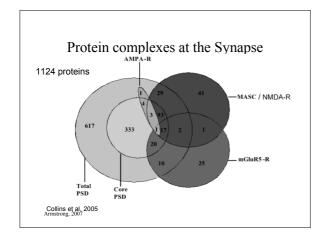
Armstrong, 200

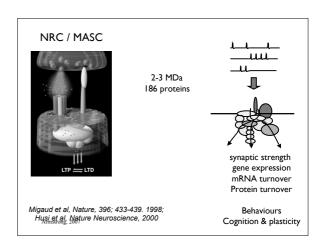
Cluster analysis on the network

Reconstructing the cognitive proteome


J Douglas Armstrong Edinburgh Centre for Bioinformatics University of Edinburgh


Armstrong, 2007


Genes 2 Cognition www.genes2cognition.org


University of Edinburgh Wellcome Trust Sanger Institute MRC Human Genetics Unit

Informatics; Rodent Models (functional genomics, proteomics, gene knock-outs and replacement, behaviour and electrophysiology); Human molecular psychiatry
PI - Seth Grant, 12 co-PIs

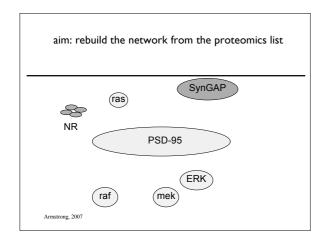
The synaptic proteome is enriched for proteins containing signalling related domains

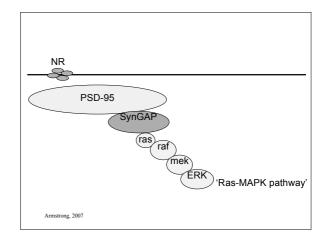
	% MASC	% Mouse	ratio
Protein kinase	11.8	3.75	3.16
Ser/Thr protein kinase	10.2	1.69	6.05
SH3	8.06	1.51	5.33
Pleckstrin-like	5.91	1.25	4.72
PDZ/DHR/GLGF	5.91	0.74	8.04
Small GTP-binding domain	5.38	1.49	3.62
Pleckstrin homology	4.84	1.08	4.49
Calcium-binding EF-hand	4.84	1.65	2.93
C2	4.30	0.82	5.26
IQ calmodulin-binding region	3.76	0.31	12.0

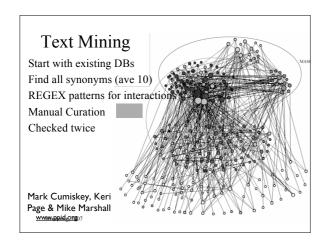
Armstrong, 2007

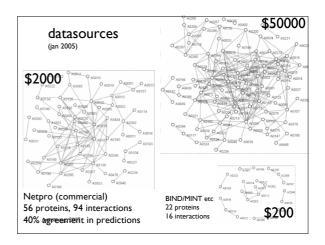
Non-Sequence Annotation

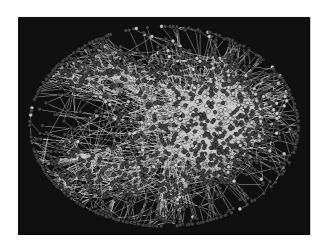
- · Clinical:
 - Schizophrenia, Mental Retardation, Bipolar Disorder, Depression
- Model Organisms:
 - Rodent behaviour
 - Rodent electrophysiology: LTP/LTD.
- Text mining

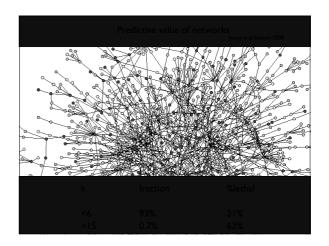

Armstrong, 2007

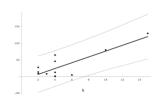

Mark Cumiskey, Mike Marshall, Keri Page.


Annotation of MASC proteins 33 Schizophrenia Bipolar disorder 12 Depression 14 Mental retardation 23 LTP 44 3 32 Rodent spatial learning 2 25 Rodent fear conditioning Armstrong, 2007


Protein list


- 186 molecules closely bound to NR2A
- >1000 molecules in PSD
- · heavily enriched for signalling proteins
- heavily enriched for proteins linked to human cognition and rodent behaviour
- what about pathways and structure?



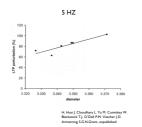

Synapse proteome predictions

- Biology:
 - LTP change in neuron response after experience (electrophysiological)
 - Mouse KOs
- Network Analysis
 - vertex degree (number of protein interactions)
 - network diameter (average shortest path after simulated protein deletion)

Armstrong, 2007

Simulated disruption vs. mutations

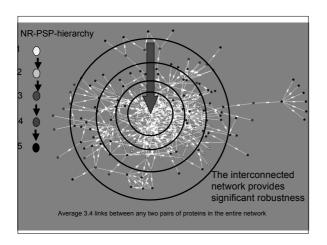
100Hz LTP data crated from literature. Linear correlation between simulation and *in vivo* assay. (p<0.01)

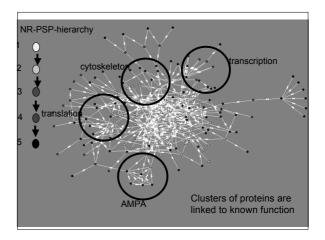


Armstrong, 2007

Simulated disruption vs. mutations

Linear correlation between simulation and *in vivo* assay

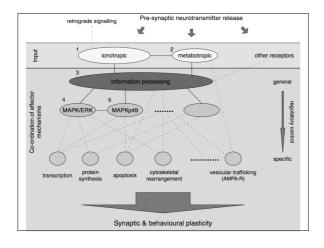

Details: Mutations in MEK I, SynGAP, NR2AC, PKA, PI3-kinase, PSD-95 were all analysed in a single laboratory (TJ O'Dell, UCLA) under controlled conditions and LTP disruption measured. (p<0.05)

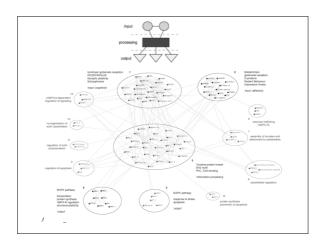


Armstrong 200

robust network

- Biological or Simulated disruption of key molecules the network does not abolish LTP
- Redundancy in signalling pathways
- Need to consider multiple targets/pathways

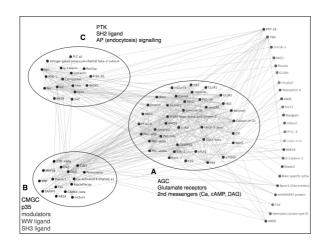

Community stucture based clustering

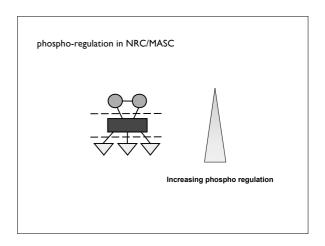


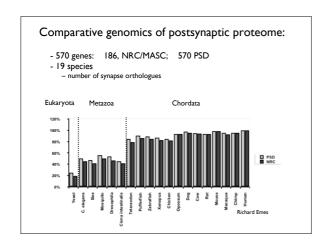
- Choose a start node/protein at random
- Follow a random walk adding 1 to the value of each interaction passed
- Repeat
- · Select highest valued interaction and remove
- Continue until network fragments

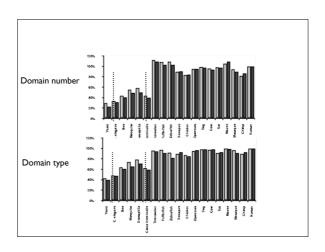
Armstrong, 200

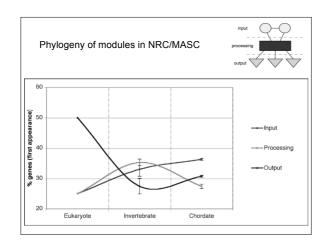
To or a radio of a second or a

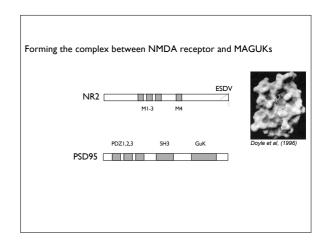


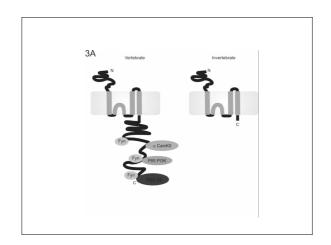

architecture relates to function small world nature gives robustness underlying modular substructure modules have specific functionality what about dynamics? - regulation within network - evolution from simple nervous systems - expression patterns across brain regions Armstrong, 2007

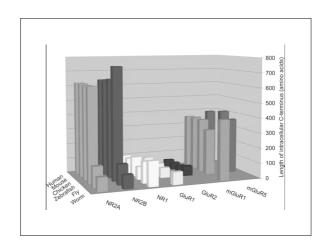

regulation/dynamics

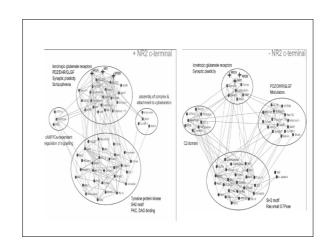

- · 25 kinases
- 600 potential phosphorylation sites in PSP
- phospho-peptide array
- existing models of a few kinase pathways

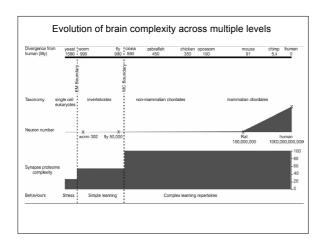

Armstrong, 2007 Marcelo Coba

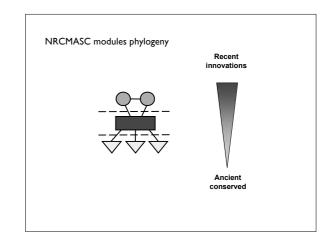


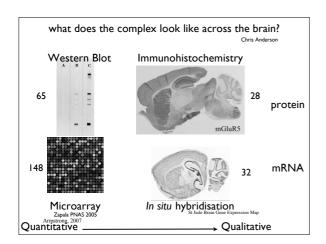


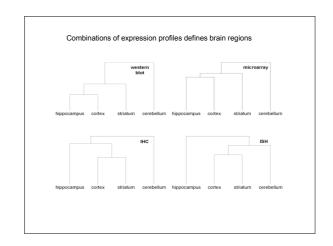











-7 1	te NR2 cytoplasmic C-terminal motifs absent in invertebrates					
Name	motif (ENSP00000279593)	Start				
PXSP motif	PRSP	1114				
not named ?	CxxCxxxxNLYDIxED	1242				
fyn site	Y	1246				
PXSP motif	PQSP	1282				
CanKII binding	RQHSYD	1300				
PKC	S	1303				
PKC	S	1323				
p85 P13K binding	YxxM	1336				
fyn site	Y	1336				
AP-2 binding	YEKL	1474				
fyn site	Y	1474				
CK2 site	S	1481				
PDZ binding	ESDV	1481				

