
Bioinformatics 2

From genomics & proteomics to biological networks

Armstrong, 2007

Aims

- Briefly review functional genomics
- Biological Networks in general
- Genetic Networks
- Briefly review proteomics
- Protein Networks

Biological Profiling

- Microarrays
 - cDNA arrays
 - oligonucleotide arrays
 - whole genome arrays
- Proteomics
 - yeast two hybrid
 - PAGE techniques

Why microarrays?

- What genes are expressed in a tissue and how does that tissue respond to one of a number of factors:
 - change in physical environment
 - experience
 - pharmacological manipulation
 - influence of specific mutations

Armstrong, 2007

What do we actually get?

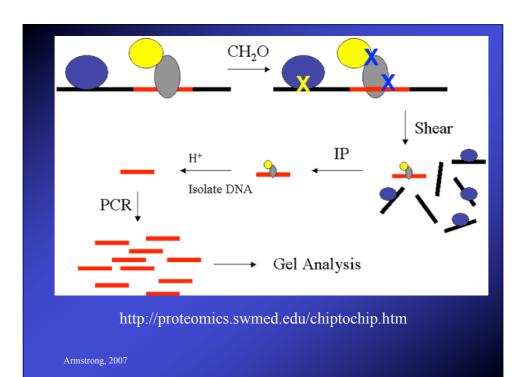
- A snap-shot of the mRNA profile in a biological sample
- With the correct experimental conditions we can compare two situations
- Not all biological processes are regulated through mRNA expression levels

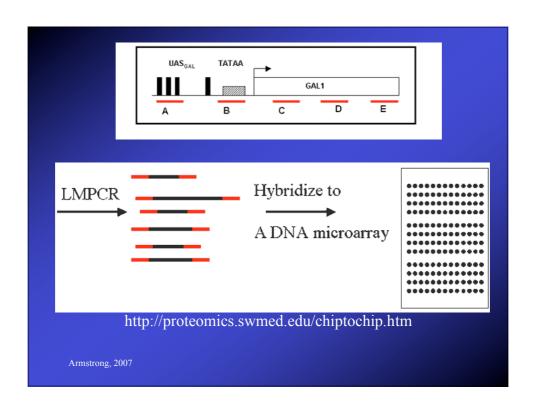
What can we learn?

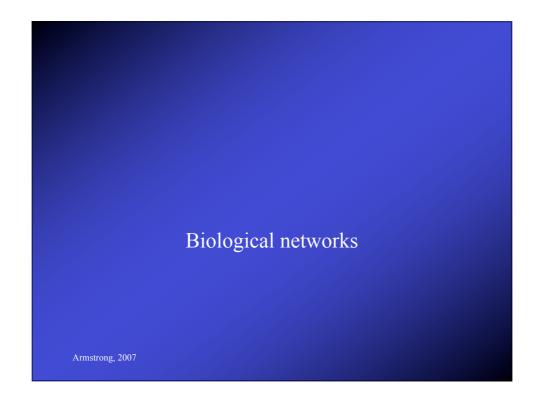
- Identify functionally related genes
- Find promoter regions (common regulation)
- Predict genetic interactions
- If we change one variable a network of gene responses should compensate
- Homeostasis is a fundamental principle of biology

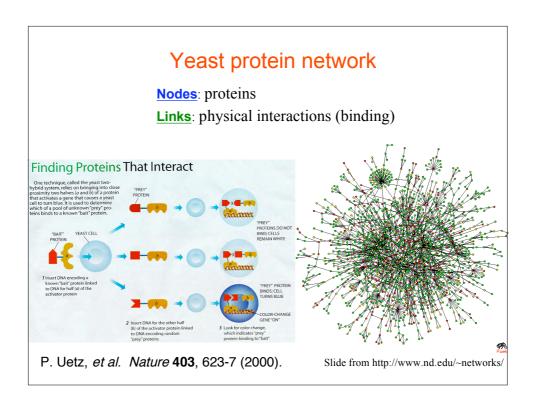
 almost all biological systems exist in a controlled state of negative feedback.

Armstrong, 2007


The Transcriptome


- Microarrays work by revealing DNA-DNA binding.
- Transcriptional activators also bind DNA
- Spot genomic DNA onto glass slides
- Label protein extracts
- Hybridise to the genomic probes
- Reveals domains that include promoter regions


ChIP to Chip


Chromatin Immunoprecipitation to Microarray (Chip)

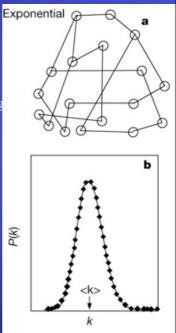
Protein-DNA interactions *de-novo* prediction has many false positives Which DNA sites do actually bind a specific TF? Requires an antibody to the protein

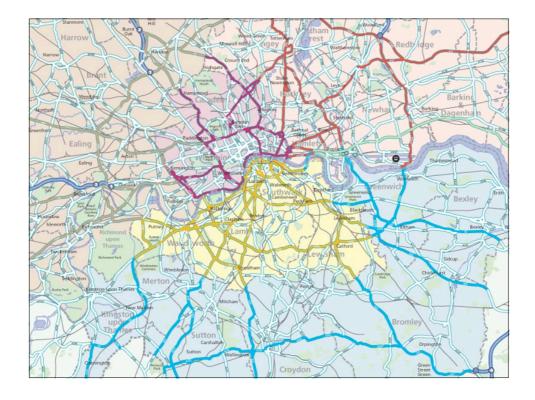
Building networks...

- Biological Networks
 - Random networks
 - Scale free networks
 - Small worlds
- Metabolic Networks
- Proteomic Networks
- The Mammalian Synapse
- Other synapse models?

Biological Networks

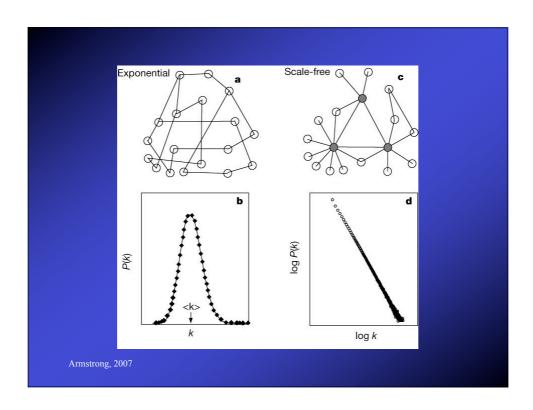
- Genes act in cascades
- Proteins form functional complexes
- Metabolism formed from enzymes and substrates
- The CNS neurons act in functional networks
- Epidemiology mechanics of disease spread
- Social networks interactions between individuals in a population
- Food Chains

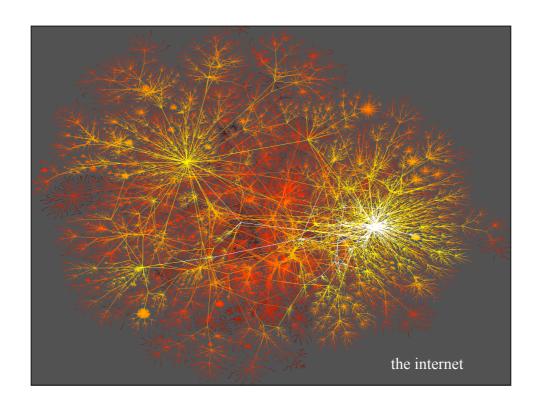

Armstrong, 2007


Protein Interactions

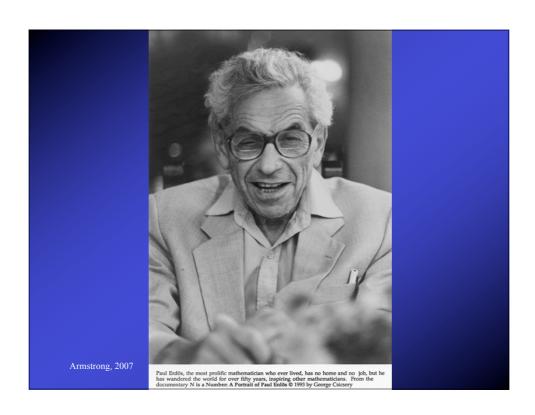
- Individual Proteins form functional complexes
- These complexes are semi-redundant
- The individual proteins are sparsely connected
- The networks can be represented and analysed as an undirected graph

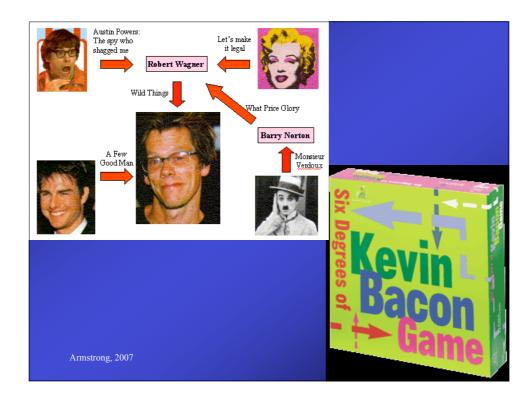
Large scale organisation


- Networks in biology generally modeled using classic random network theory.
- Each pair of nodes is connected with probability p
- Results in model where most nodes have the same number of links <k>
- The probability of any number of links per node is P(k)≈e^{-k}



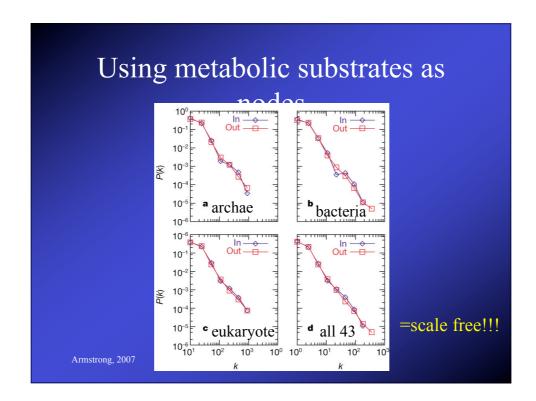
Non-biological networks


- Research into WWW, internet and human social networks observed different network properties
 - 'Scale-free' networks
 - P(k) follows a power law: P(k)≈ $k^{-\gamma}$
 - Network is dominated by a small number of highly connected nodes - hubs
 - These connect the other more sparsely connected nodes



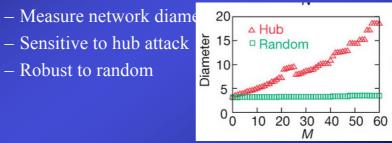
Small worlds

- General feature of scale-free networks
 - any two nodes can be connected by a relatively short path
 - average between any two people is around 6
 - What about SARS???
 - 19 clicks takes you from any page to any other on the internet.



Biological organisation

Jeong et al., 2000 The large-scale organisation of metabolic networks. Nature 407, 651-654


- Pioneering work by Oltvai and Barabasi
- Systematically examined the metabolic pathways in 43 organisms
- Used the WIT database
 - 'what is there' database
- What Is There?

 Interactive Metabolic
 Reconstruction on the WEB
- http://wit.mcs.anl.gov/WIT2
- Genomics of metabolic pathways

Random mutations in metabolic networks

- Simulate the effect of random mutations or mutations targeted towards hub nodes.
 - Measure network diame

Armstrong, 2007

Consequences for scale free networks

- Removal of highly connected hubs leads to rapid increase in network diameter
 - Rapid degeneration into isolated clusters
 - Isolate clusters = loss of functionality
- Random mutations usually hit non hub nodes
 - therefore robust
- Redundant connectivity (many more paths between nodes)

Network Motifs

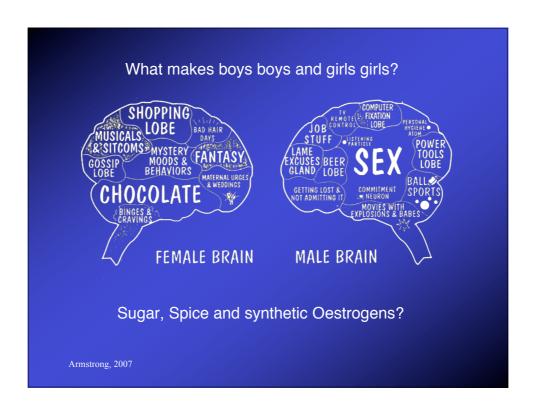
- Do all types of connections exist in networks?
- Milo et al studied the transcriptional regulatory networks in yeast and E.Coli.
- Calculated all the three and four gene combinations possible and looked at their frequency

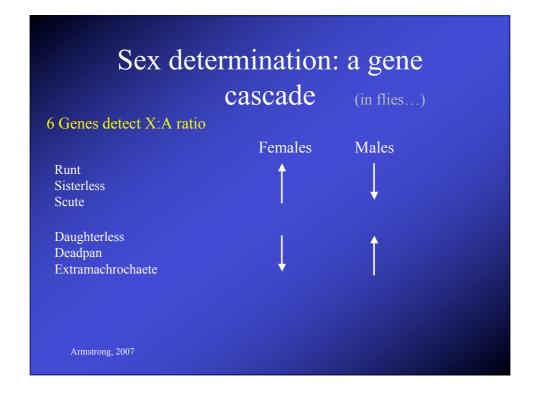
Armstrong, 2007

Gene sub networks

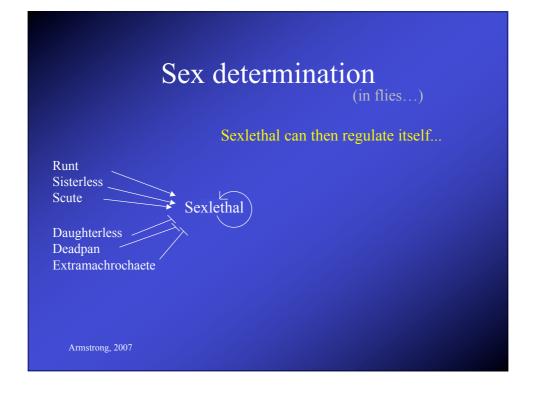
Network	Nodes	Edges	$N_{\rm real}$	N _{rand} ± SI	Z score	$N_{\rm real}$	$N_{\rm rand} \pm {\rm SD}$	Z score
Gene regulati (transcription			-	· X Ψ Υ Ψ · Z	Feed- forward loop	X	₩ W	Bi-fan
E. coli	424	519	40	7 ± 3	10	203	47 ± 12	13
S. cerevisiae*	685	1,052	70	11 ± 4	14	1812	300 ± 40	41

Heavy bias in both yeast and E.coli towards these two sub network architectures

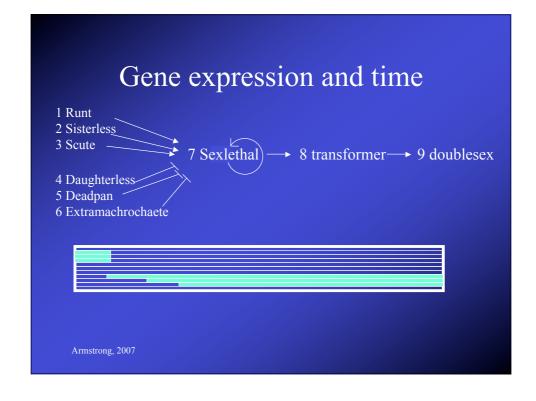

				AT	M + CD		A7	M + CD		N/	At CT	
	Network	Nodes	Edges		N _{rand} ± SD	Z score Feed-	N _{real}	N _{rand} ± SD	Z score Bi-fan	N _{real}	N _{rand} ± SI	Z score
	Gene regulation (transcription)			X Feed- V forward		ĺλ	î Bi-tan		l			
					¥ Ψ	loop	VZ Z	7/1		l		
				 	Z		L	**		l		
	E. coli	424	519	40	7 ± 3	10	203	47 ± 12	13	l		
	S. cerevisiae*	685	1,052	70	11 ± 4	14	1812	300 ± 40	41	<u> </u>		
	Neurons			ΙГ	X V	Feed- forward	Ιλ	オ	Bi-fan	K 2	"	Bi- parallel
					Y	loop	V/L	7W		YN	ν^{z}	paramet
				>	Ψ z		L	w		٦,	w	
	C. elegans†	252	509	125	90 ± 10	3.7	127	55 ± 13	5.3	227	35 ± 10	20
	Food webs				X	Three	K X	Ĺ,	Bi-			
					Ψ Y	chain	v	7	parallel	l		
					V		1	K		l		
	Little Rock	92	984	3219	$\frac{\mathbf{Z}}{3120 \pm 50}$	2.1	7295 W	2220 ± 210	25	l		
	Ythan	83	391	1182	1020 ± 20	7.2	1357	230 ± 50	23	l		
	St. Martin	42	205	469	450 ± 10	NS	382	130 ± 20	12	l		
	Chesapeake Coachella	31 29	67 243	80 279	82 ± 4 235 ± 12	NS 3.6	26 181	5 ± 2 80 ± 20	8 5	l		
	Skipwith	25	189	184	150 ± 7	5.5	397	80 ± 25	13	l		
	B. Brook	25	104	181	130 ± 7	7.4	267	30 ± 7	32	Ι ,	v	
	Electronic cir (forward logic				ŵ	Feed- forward	Ϊ́λ	Λ	Bi-fan	K,	A	Bi- parallel
		• /			¥	loop	VZ	7/V		LY V	\varkappa^z	
				→	z		z	W		١ ١	W	
	s15850	10,383	14,240	424	2 ± 2	285	1040	1 ± 1	1200	480	2 ± 1	335
	s38584 s38417	20,717 23,843	34,204 33,661	413 612	10 ± 3 3 ± 2	120 400	1739 2404	6 ± 2 1 ± 1	800 2550	711 531	9 ± 2 2 ± 2	320 340
	s9234	5,844	8,197	211	2 ± 1	140	754	1 ± 1 1 ± 1	1050	209	1 ± 1	200
	s13207	8,651	11,831	403	2 ± 1	225	4445	1 ± 1	4950	264	2 ± 1	200
	Electronic circuits (digital fractional multipliers)		X Three-node			X Y Bi-fan			X- ∧	→ _Y	Four- node	
			/	A	feedback				T.	. ↓	feedback	
				Y ←	— z	loop	Z	w		z <	—w	loop
	s208	122	189	10	1 ± 1	9	4	1 ± 1	3.8	5	1 ± 1	5
	s420	252	399	20	1 ± 1	18	10 22	1 ± 1	10	11 23	1 ± 1	11
	s838‡ World Wide	512 Web	819	40 →	1 ± 1 X	38 Feedback	22 X	1±1	20 Fully	23 X	1±1	25 Uplinked
	oriu ide				Q	with two	1	Z.	connected	1	1	mutual
Armstrong					\$	mutual dyads	Y <	→ z	triad	Ý←	→ z	dyad
				_	Ż	,				l		
	nd.edu§	325,729	1.46e6	1.1e5	$2e3 \pm 1e2$	800	6.8e6	5e4±4e2	15,000	1.2e6	1e4 ± 2e	2 5000

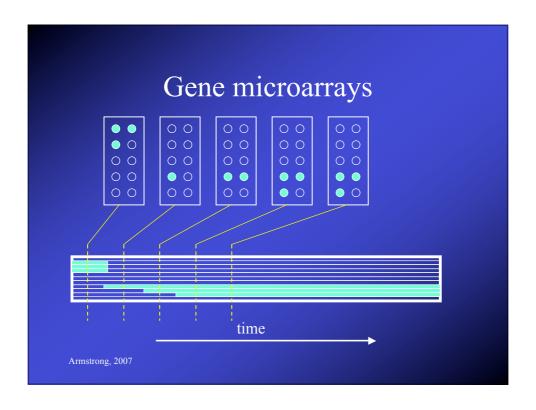

Gene networks and network inference

Armstrong, 2007


What is a gene network

- Genes do not act alone.
- Gene products interact with other genes
 - Inhibitors
 - Promoters
- The nature of genetic interactions in complex
 - Takes time
 - Can be binary, linear, stochastic etc
 - Can involve many different genes



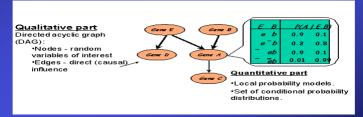


Gene Network Inference

- Gene micro-array data
- Learning from micro-array data
- Unsupervised Methods
- Supervised Methods
- Edinburgh Methods

Gene Network Inference

- Gene micro-array data
 - Time Series array data
 - Tests under ranges of conditions
- Unlike example 1000s genes
- Lots of noise
- Clustering would group many of these genes together
- Aim: To infer as much of the network as possible


Armstrong, 2007

Learning from Gene arrays

- Big growth industry but difficult problem
- Initial attempts based on unsupervised methods:
 - Basic clustering analysis related genes
 - Principal Component Analysis
 - Self Organising Maps
 - Bayesian Networks

Bayesian 'gene' networks

- Developed by Nir Friedman and Dana Pe'er
- Can be easily adapted to a supervised method

Armstrong, 2007

Learning Gene Networks

- The field is generally moving towards more supervised methods:
 - Bayesian networks can use priors
 - Support Vector machines
 - Neural Networks
 - Decision Trees

Can we combine network knowledge with gene inference?

- Scale free architecture
 - Chance of new edges is proportional to existing ones
 - Highly connected nodes may well be known to be lethal
- Network motifs
 - Constrain the types of sub networks
- Prior Knowledge
 - Many sub networks already known

Armstrong, 2007

Conclusions

- Gene network analysis is a big growth area
- Several promising fields starting to converge
 - Complex systems analysis
 - Using prior knowledge
 - Application of advance machine learning algorithms
 - AI approaches show promise