Bioinformatics 2

From genomics & proteomics to
biological networks

Armstrong, 2007

Aims

Briefly review functional genomics
Biological Networks in general
Genetic Networks

Briefly review proteomics

Protein Networks

Armstrong, 2007
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Biological Profiling

» Microarrays
— cDNA arrays
— oligonucleotide arrays
— whole genome arrays
* Proteomics
— yeast two hybrid
— PAGE techniques
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Why microarrays?

» What genes are expressed in a tissue and
how does that tissue respond to one of a
number of factors:

— change in physical environment
— experience
— pharmacological manipulation

— influence of specific mutations

Armstrong, 2007

What do we actually get?

* A snap-shot of the mRNA profile in a
biological sample

» With the correct experimental conditions we
can compare two situations

» Not all biological processes are regulated
through mRNA expression levels

Armstrong, 2007




What can we learn?

Identify functionally related genes
Find promoter regions (common regulation)
Predict genetic interactions

If we change one variable a network of gene
responses should compensate

Homeostasis is a fundamental principle of biology
- almost all biological systems exist in a controlled
state of negative feedback.
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The Transcriptome

Microarrays work by revealing DNA-DNA
binding.

Transcriptional activators also bind DNA
Spot genomic DNA onto glass slides

Label protein extracts

Hybridise to the genomic probes

Reveals domains that include promoter
regions

Armstrong, 2007




ChIP to Chip

Chromatin Immunoprecipitation to Microarray (Chip)

Protein-DNA interactions

de-novo prediction has many false positives
Which DNA sites do actually bind a specific TF?
Requires an antibody to the protein

Armstrong, 2007

http://proteomics.swmed.edu/chiptochip.htm
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Hybridize to

—_—
A DNA microarray
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Biological networks
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Yeast protein network

Nodes: proteins
Links: physical interactions (binding)

Finding Proteins That Interact

One technique, called the yeast two-
hybrid system, relies on bringing into close
proximity two halves {a and ) of a protein
that activates a gene that causes a yeast
cell to turn blue.Itis used to determine ?x )
which ofapoolof unknown oy pro- QE—GEY = » D@

teins binds to a known “bait” protein.

PREY"
PROTEIN

"PREY"
PROTEINS DO NOT
BIND; CELLS

REMAINWHITE So o8 2

“BAIT*  YEASTCELL

= -0
» » B

1 Insert DNA encoding a
known “bait"protein linked
to DNA for half (o) of the N

activator protein

2 Insert DNA for the other half

“PREY" PROTEIN
A BINDS; CELL
) A\ TURNS BLUE

$3 ~ COLOR-CHANGE

(b} of the activator protein linked 3 Lookfor color change,
to DNA encoding random which indicates"prey”
“prey”proteins, protein binding to"bait"

Paiek
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Building networks. ..

Biological Networks
— Random networks
— Scale free networks
— Small worlds
Metabolic Networks

Proteomic Networks

The Mammalian Synapse
Other synapse models?

Armstrong, 2007




Biological Networks

Genes - act in cascades

Proteins - form functional complexes

Metabolism - formed from enzymes and substrates
The CNS - neurons act in functional networks
Epidemiology - mechanics of disease spread

Social networks - interactions between individuals
in a population
Food Chains

Armstrong, 2007

Protein Interactions

Individual Proteins form functional
complexes

These complexes are semi-redundant

The individual proteins are sparsely
connected

The networks can be represented and
analysed as an undirected graph

Armstrong, 2007




Large scale
organisation

Networks in biology generally modeled using
classic random network theory.

Each pair of nodes is connected with
probability p

Results in model where most nodes have the
same number of links <t>

The probability of any number of links per
node is P(k)=e*

Pik)

Armstrong, 2007
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Non-biological networks

* Research into WWW, internet and human
social networks observed different network
properties

— ‘Scale-free’ networks

— P(k) follows a power law: P(k)~k™

— Network is dominated by a small number of
highly connected nodes - hubs

— These connect the other more sparsely
connected nodes

Armstrong, 2007
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the internet

Small worlds

» (General feature of scale-free networks

— any two nodes can be connected by a relatively
short path

— average between any two people is around 6
* What about SARS??7?

— 19 clicks takes you from any page to any other
on the internet.

Armstrong, 2007




Armstrong, 2007
Paul Erdds, the most prolific mathematician who ever lived, has no home and no_ job, but he
has wandered the world for over fifty years, inspiring other mathematicians. From the
documentary N is a Number: A Portrait of Paul Erdds © 1993 by George Csicsery
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Biological organisation

Jeong et al., 2000 The large-scale organisation of metabolic
networks. Nature 407, 651-654

 Pioneering work by Oltvai and Barabasi

» Systematically examined the metabolic
pathways in 43 organisms

 Used the WIT database ;
— ‘what is there” database ~: A ¢ 5o con on th i
— http://wit.mcs.anl.gov/WIT2/
— Genomics of metabolic pathways

Armstrong, 2007
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Random mutations in metabolic
networks

« Simulate the effect of random mutations or
mutations targeted towards hub nodes.

— Measure network diamg
a Hub

— Sensitive to hub attack o Random

— Robust to random

Diameter
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M
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Consequences for scale free
networks

Removal of highly connected hubs leads to rapid increase
in network diameter

— Rapid degeneration into isolated clusters

— Isolate clusters = loss of functionality
Random mutations usually hit non hub nodes

— therefore robust

Redundant connectivity (many more paths between nodes)

Armstrong, 2007




Network Motifs

Do all types of connections exist in
networks?

Milo et al studied the transcriptional
regulatory networks in yeast and E.Coli.

Calculated all the three and four gene
combinations possible and looked at their
frequency

Armstrong, 2007

Milo et al. 2002 Network Motifs: Simple Building Blocks of Complex
Networks. Science 298: 824-827

neuron synaptic ecologlcal
connection network food web
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Gene sub networks

Network Nodes Nreal Nrand*SD  Zscore | Nreal Nrand*SD  Zscore

Gene regulation Feed- X Bi-fan
(transcription) forward
loop

Z w

E. coli 424 203 47+12 13
S. cerevisiage® 685 * 1812 300+40 41

Heavy bias in both yeast and E.coli towards these two sub
network architectures

Armstrong, 2007
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Network Nodes  Edges | Mreal Nrand*SD  Zscore | Nreal Nrand £SD Zscore | Nreal Nrand £SD  Zscore
Gene regulation X Feed- X Bi-fan
(transeription) \2 forward ><
Y loop
\% Z W
z
E. coli 424 519 |40 7+3 10 203 4712 13
S. cerevisiae* 685 1052 |70 14 14 1812 30040 41
Neurons X Bi-fan X -
\2 LN parallel
v N
z w
C. eleganst 252 509 125 9010 3.7 127 55£13 53 227 35%10 20
Food webs X Three X Bi-
\ chain 2 parallel
Y Y, 7
\ N ¥
Z w
Litle Rock 92 984 |3219 3120£50 21 7295 220210 25
Ythan 83 391 1182 1020£20 72 1357 230+50 23
St.Martin 42 205 469 45010 NS 382 13020 12
Chesapeake 31 67 80 82+4 NS 2% 5+2 8
Coachella 29 243 279 23512 36 181 8020 5
Skipwith 25 189 184 150%7 55 397 8025 13
B. Brook 25 104 181 13047 74 267 30+7 32
Electronic circuits X Feed- X Y Bi-fan v X N Bi-
(forward logic chips) ‘t’ forward 2 {\ ¥ % parallel
loop
v 7w N wZ
z
515850 10383 14,240 | 424 2:2 285 1040 11 1200 480 2+1 335
538584 20717 34,204 413 10%3 120 1739 6+2 800 711 9+2 320
538417 23,843 33,661 | 612 32 400 2404 121 2550 531 22 340
59234 5844 8197 | 211 2+1 140 754 1:1 1050 209 1£1 200
513207 8651 11831 1403 2:1 225 4445 11 4950 264 2+1 200
Electronic circuits X Three- X Y Bi-fan X—>Y Four-
(digital fractional multipliers) /1 \ node /Ix \l] node
feedback \ML feedback
Y<— 7 loop A w 7<—WwW loop
5208 122 189 10 1x1 9 4 121 38 5 121 H
420 252 399 |20 1+1 18 10 121 10 1 1+ 11
s838% 512 819 |40 1+1 38 2 1+1 20 23 11 25
World Wide Web X Feedback X Fully X Uplinked
¢ with two ZI N connected /7 N mutual
$ mutal | 5 N triad & 7 dyad
y dyads <> N
nd.cdu§ 325,720 1.46¢6 | 1.0eS  2e3x1e2 800 6806 Sc4xde2 15000 | 1.2¢6  ledx2¢2 5000




Gene networks and network inference

Armstrong, 2007

What 1s a gene network

* Genes do not act alone.
* Gene products interact with other genes
— Inhibitors
— Promoters
* The nature of genetic interactions in complex
— Takes time
— Can be binary, linear, stochastic etc

— Can involve many different genes

Armstrong, 2007




What makes boys boys and girls girls?
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Sugar, Spice and synthetic Oestrogens?
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Sex determination: a gene
cascade (i fries.)

6 Genes detect X: A ratio

Females Males

Runt
Sisterless

Scute

Daughterless
Deadpan
Extramachrochaete

Armstrong, 2007




Sex determination

(in flies...)

6 Genes regulate ‘Sexlethal’

Runt
Sisterless fofect

Scute.  — Sexlethal

Daughterless/\\

Deadpan ffect
Extramachrochaete =~ €¢¢
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Sex determination

(in flies...)

Sexlethal can then regulate itself...

Runt

Sisterless \
\

Scute.  — —y, Sexlethal

Daughterless/\/\

Deadpan
Extramachrochaete
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Sex determination

(in flies...)

Downstream cascade builds...

Sexlethal )| — transformer —> doublesex

Armstrong, 2007

Gene expression and time

1 Runt
2 Sisterless

RINTIY
¢ T7——=" 7 Sexlethal)—> 8 transformer—> 9 doublesex

4 Daughterle%

5 Deadpan
6 Extramachrochaete

e —
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Gene microarrays

Armstrong, 2007

Gene Network Inference

Gene micro-array data
Learning from micro-array data
Unsupervised Methods
Supervised Methods

Edinburgh Methods

Armstrong, 2007




Gene Network Inference. .

* Gene micro-array data
— Time Series array data -
— Tests under ranges of conditinon;
Unlike example - 1000s genes
Lots of noise sk

Clustering would group many of these genés a

together

Aim: To infer as much of the network as possible

Armstrong, 2007

Learning from Gene arrays

» Big growth industry but difficult problem
* Initial attempts based on unsupervised
methods:
— Basic clustering analysis - related genes
— Principal Component Analysis
— Self Organising Maps
— Bayesian Networks

Armstrong, 2007




Bayesian ‘gene’ networks

» Developed by Nir Friedman and Dana Pe’er

» Can be easily adapted to a supervised
method

Qualitative part
Directed acyclic graph
(DAG):
“Nodes - random
variables of interest
*Edges - direct (caussw/v
influence Quantitative part
*Local probability models.

*Set of conditional probability
distributions.

Armstrong, 2007

Learning Gene Networks

* The field is generally moving towards more
supervised methods:
— Bayesian networks can use priors
— Support Vector machines
— Neural Networks
— Decision Trees

Armstrong, 2007




Can we combine network
knowledge with gene inference?

* Scale free architecture
— Chance of new edges is proportional to existing ones

— Highly connected nodes may well be known to be
lethal

* Network motifs
— Constrain the types of sub networks

* Prior Knowledge
— Many sub networks already known

Armstrong, 2007

Conclusions

* Gene network analysis is a big growth area
* Several promising fields starting to converge
— Complex systems analysis
— Using prior knowledge
— Application of advance machine learning algorithms

— Al approaches show promise

Armstrong, 2007




