

Aims

- Briefly review functional genomics
- Biological Networks in general
- Genetic Networks
- Briefly review proteomics
- Protein Networks

Why microarrays?

- What genes are expressed in a tissue and how does that tissue respond to one of a number of factors:
 - change in physical environment
 - experience
 - pharmacological manipulation
 - influence of specific mutations

Armstrong, 200

What do we actually get?

- A snap-shot of the mRNA profile in a biological sample
- With the correct experimental conditions we can compare two situations
- Not all biological processes are regulated through mRNA expression levels

What can we learn?

- Identify functionally related genes
- Find promoter regions (common regulation)
- Predict genetic interactions
- If we change one variable a network of gene responses should compensate
- Homeostasis is a fundamental principle of biology

 almost all biological systems exist in a controlled state of negative feedback.

Armstrong, 2007

The Transcriptome

- Microarrays work by revealing DNA-DNA binding.
- Transcriptional activators also bind DNA
- Spot genomic DNA onto glass slides
- Label protein extracts
- Hybridise to the genomic probes
- Reveals domains that include promoter regions
- Armstrong, 2007

		GAL1 C D E]
		Hybridize to A DNA microarray	
Armstrong, 200	nttp://proteomics.s	wmed.edu/chiptochip.h	tm

Building networks...

- Biological Networks
 - Random networks
- Metabolic Networks
- Proteomic Networks
- The Mammalian Synapse
- Other synapse models?

Biological Networks

- · Genes act in cascades
- · Metabolism formed from enzymes and substrates
- Epidemiology mechanics of disease spread
- Social networks interactions between individuals in a population
- Food Chains

Protein Interactions

- Individual Proteins form functional complexes
- These complexes are semi-redundant
- The individual proteins are sparsely connected
- The networks can be represented and analysed as an undirected graph

Large scale organisation

- Networks in biology generally modeled usin classic random network theory.
- Each pair of nodes is connected with probability p

- Probability pResults in model where most nodes have the same number of links $\langle k \rangle$ The probability of any number of links per node is $P(k) \approx e^{-k}$

Non-biological networks

- Research into WWW, internet and human social networks observed different network properties
 - 'Scale-free' networks
 - P(k) follows a power law: P(k) $\approx k^{-\gamma}$
 - Network is dominated by a small number of highly connected nodes hubs

 - These connect the other more sparsely connected nodes

Small worlds

- General feature of scale-free networks – any two nodes can be connected by a relatively short path
 - average between any two people is around 6
 - 19 clicks takes you from any page to any other on the internet.

Biological organisation

Jeong et al., 2000 The large-scale organisation of metabolic networks. Nature 407, 651-654

- · Pioneering work by Oltvai and Barabasi
- Systematically examined the metabolic pathways in 43 organisms
- Used the WIT database - 'what is there' database
 - hat is There active Metabolic truction on the WEB
 - http://wit.mcs.anl.gov/WIT2/ - Genomics of metabolic pathways

Random mutations in metabolic networks

- Simulate the effect of random mutations or mutations targeted towards hub nodes.
 - Measure network diame
 - Robust to random

Consequences for scale free networks

- Removal of highly connected hubs leads to rapid increase in network diameter
- · Random mutations usually hit non hub nodes
- therefore robust
- Redundant connectivity (many more paths between nodes)

Network Motifs

- Do all types of connections exist in networks?
- Milo et al studied the transcriptional regulatory networks in yeast and E.Coli.
- Calculated all the three and four gene combinations possible and looked at their frequency

Milo et al. 2002 Network Motifs: Simple Building Blocks of Complex Biological 1 transcripti ecologica food well $X \rightarrow Y$

(transcription)			forward loop	↓ Z	Ś.	Bi-Ian
E. coli 424	4 519	40 7±3	10	203	47 ± 12	13
S. cerevisiae* 68	5 1,052	70 11±4	14	1812	300 ± 40	41

	Network	Nedes	Edges	Nreal	Nrand ± SD	Z score	Nreal	N _{tand} ± SD	Z score	Nreal	Nrand ± SD	Z score
	Gene regulat	ion		Г	- X	Feed-	Ň	X	Bi-fan			
	(transcriptio)				v.	loso	V	Sw				
					¥		z	w				
	E coli	424	\$10	40	7 # 3	10	203	47 = 12	11			
	S. cerestriae*	685	1,052	70	11±4	14	1812	300 ± 40	41			
	Neurons			Г	- <u>X</u>	Feed-	X	X	Bi-fan	V.	X N	Bi-
					÷.	forward		S.V		, ,	` ,	parallel
					ŵ	mah	z	Ŵ		.,11	¥.	
					z						w	
	C. elegans† Eacel webu	252	509	125	90±10 X	3.7 Three	127	35±13	5.3 Bi.	20	35±10	20
	1000.000				Ŷ	chain	¥.	-14	parallel			
					Y		Y _N	12 ^Z				
					ž		7 ,	r -				
	Little Rock	92	984	3219	3120 ± 50	2.1	7295	2220 ± 210	25			
	Ythan	83	391	1182	1020 ± 20	7.2	1357	230 ± 50	23			
	St. Martin	42	67	409	450 ± 10	NS	382	130 ± 20	12			
	Conchella	29	243	279	235 ± 12	3.6	181	80 ± 20	5			
	Skipwith	25	189	184	150 ± 7	5.5	397	80 ± 25	13			
	B. Brook	25	104	181	130 ± 7	7,4	267	30 ± 7	32	_	v	
	(forward loris	cuits (chins)			ŵ	ferward	Ιĥ	1	Di-tai	K	° ¥	parallel
					Ŷ	losp	VK	71		14	¥°	
				6	z		×.	w			w	
	s15850	10,383	14,240	424	2 ± 2	285	1040	1 ± 1	1200	480	2 ± 1	335
	s38584	20,717	34,204	413	10 ± 3	120	1739	6±2	800	711	9 = 2	320
	\$38417	5 944	9 107	612	3±2	400	2404	1 ± 1	1050	200	2 ± 2	340
	\$13207	8,651	11,831	403	2±1	225	4445	1±1	4950	264	2 ± 1	200
	Electronic cit	rcuits		.,	ς.	Three-	X	X	Bi-fan	X-	$\rightarrow Y$	Four-
	(digital fracti	onal multi	(plices)	1	7	node feedback				IΫ́	1	feedback
				۲←	— z	loop	Z	W		z.	←w	loop
	\$208	122	189	10	1+1	9	4	1+1	1.8	5	1 * 1	5
	s420	252	399	20	1±1	18	10	1 ± 1	10	11	1 ± 1	11
	x838‡	512	819	40	1±1	38	22	1±1	20	23	1 ± 1	25
	World Wide	Web		P	8	Feedback	1 X		Fully	1 X	8	Uplinked
Armetrony					Ŷ	mutual	K	17	triad	2	1	dvad
Amisuonį				L	- 8	dyads	Y ←	⇒ z		r<	→ Z	
		104 730	144				10.1	6-4-4-2	16.000			6000
	00.0019	323,729	1,4020	1.165	203 T 162	800	0.860	3042462	13,000	1,225	104 2 202	3000

What is a gene network

- Genes do not act alone.
- Gene products interact with other genes – Inhibitors
 - Promoter
- The nature of genetic interactions in complex
 - Can be binary, linear, stochastic etc
 - Can be offarly, infearly stochastic comparison of the stochas

Armstrong, 2007

Sex	determination
	6 Genes regulate 'Sexlethal'
Runt Sisterless Scute Daughterless Deadpan Extramachrochaete - effect	lethal
Armstrong 2007	

Gene Network Inference

- Gene micro-array data
- Learning from micro-array data
- Unsupervised Methods
- Supervised Methods
- Edinburgh Methods

Gene Network Inference

- Gene micro-array data - Time Series array data
 - Tests under ranges of conditions
- Unlike example 1000s genes
- Lots of noise
- Clustering would group many of these genes together
- Aim: To infer as much of the network as possible

Learning from Gene arrays

- Big growth industry but difficult problem
- Initial attempts based on unsupervised methods:
 - Basic clustering analysis related genes
 - Principal Component Analysis
 - Self Organising Maps
 - Bayesian Networks

Bayesian 'gene' networks

- Developed by Nir Friedman and Dana Pe'er
- Can be easily adapted to a supervised method

Learning Gene Networks

- The field is generally moving towards more supervised methods:
 - Bayesian networks can use priors
 - Support Vector machines
 - Neural Networks
 - Decision Trees

Can we combine network knowledge with gene inference?

- Scale free architecture
 - Chance of new edges is proportional to existing ones Highly connected nodes may well be known to be lethal
- Network motifs - Constrain the types of sub networks
- Prior Knowledge

- Many sub networks already known

Conclusions

- Gene network analysis is a big growth area
- Several promising fields starting to converge
 - Using prior knowledge
 - Application of advance machine learning algorithms
 - AI approaches show promise