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Lecture 3
Heuristics, Databases ;

Multiple Sequence Alignment
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Heuristic Methods

• FASTA
• BLAST
• Gapped BLAST
• PSI-BLAST
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Assumptions for Heuristic Approaches

• Even linear time complexity is a problem for large
genomes

• Databases can often be pre-processed to a degree
• Substitutions more likely than gaps
• Homologous sequences contain a lot of

substitutions without gaps which can be used to
help find start points in alignments
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FASTA

Lipman and Pearson (1988) Improved tools for biological sequence
comparison. PNAS 85: 10915-10919

• Compares a query string against a single text string (i.e. for
sequence databases, lots of searches)

• Based on the assumption that good local alignment is
likely to have some exact matching subsequences

• The algorithm looks for these subsequences first.
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Dot-plot alignment

• We can find good
subsequences just by
looking for diagonal
runs of matched
bases:
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Dot-plot alignment

• We can find good
subsequences just by
looking for diagonal
runs of matched
bases:

• Mark identical hits
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Dot-plot alignment

• We can find good
subsequences just by
looking for diagonal
runs of matched
bases:

• Find Diagonal Runs:
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Dot-plot alignment

• We can find good
subsequences just by
looking for diagonal
runs of matched
bases:

• Compare to DP
alignment: ***c
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FASTA Definitions

• ktup:
– (k respective tuples) – an integer value which specifies

the word length used to find matching substrings
– Standard 4-6 for DNA
– Standard 1 or 2 for proteins
– Shorter is more sensitive but slower
– Target databases can be preprocessed into ktup sized

chunks before queries are run.
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FASTA Definitions

• hot spots:
– The matching ktup length substrings
– Consecutive hot-spots are located along the diagonal
– See dot-plot for example of 4 length hotspots
– Often close to the dynamic programming solution

• diagonal run:
– A sequence of nearby hot-spots on the same diagonal
– i.e. spaces between hot-spots are allowed
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FASTA Definitions

• init1:
– The best scoring run

• initn:
– The best local alignment
– Combination of good diagonal runs and indels/gaps

between them.
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FASTA Process

1. Look for hot-spots:
• The stage can be done by using a look-up table or

a hash.
• Pre-process the database and store the location of

each possible ktup (AA=202, DNA=46)
• Move a ktup sized window along the query

sequence and record the position of matching
locations in the database.
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FASTA Process

2. Find best diagonal runs:
• Each hot spot gets a positive score.
• Distance between hot spots is negative and length

dependant
• Score of the diagonal run
• Fasta finds and stores the 10 best diagonal runs
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FASTA Process

3. Compute init1 & filter:
• Diagonal runs specify a potential alignment
• Evaluate properly using a substitution matrix
• Define the best scoring run as init1

• Discard any much lower scoring runs
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FASTA Process

4. Combine diagonal runs and compute initn:
• Take the ‘good alignments’ from previous stage
• Now allow gaps/indels
• Combine them into a single, better scoring

alignment
– Construct a directed weighted graph

• vertices are the runs
• edge weights represent gap penalties

– Find the best path through the graph = initn
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FASTA Process

5. Find the best local alignment
• Use the ‘alignments’ from the previous stage to

define a narrow band through the search space
• Go through that band using a dynamic

programming approach
• Size of the band is dependant on ktup value
• The best local alignment found in this stage is

called opt
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FASTA Process

6. Compare the alignments
• Take the opt or initn scores for each sequence in

the database
• Rank according to score
• Use a full dynamic programming algorithm to

align the query sequence with the highest ranking
result sequences
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FASTA Programs

• fasta3 scan a protein or DNA sequence library for 
similar sequences

• fastax/y3 compare a DNA sequence to a protein 
sequence database, comparing the translated 
DNA sequence in forward and reverse frames

• tfastax/y3 compares a protein to a translated DNA data 
bank

• fasts3 compares linked peptides to a protein databank
• fastf3 compares mixed peptides to a protein databank
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FASTA Summary

• The alignment produced is not always optimal

• The resulting scores usually compare very well
with the dynamic programming solutions

• FASTA is much faster than ordinary dynamic
programming algorithms
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BLAST

Altschul, Gish, Miller, Myers and Lipman (1990) Basic local
alignment search tool. J Mol Biol 215:403-410

• Developed on the ideas of FASTA
• Integrates the substitution matrix in the first stage

of finding the hot spots
• Faster hot spot finding
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BLAST definitions

• Given two strings S1 and S2
• A segment pair is a pair of equal lengths

substrings of S1 and S2 aligned without gaps
• A locally maximal segment is a segment whose

alignment score (without gaps) cannot be
improved by extending or shortening it.

• A maximum segment pair (MSP) in S1 and S2 is a
segment pair with the maximum score over all
segment pairs.
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BLAST Process

• Parameters:
– w: word length (substrings)
– t: threshold for selecting interesting alignment scores
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BLAST Process

• 1. Find all the w-length substrings from the
database with an alignment score >t
– Each of these (similar to a hot spot in FASTA) is called

a hit
– Does not have to be identical
– Scored using substitution matrix and score compared to

the threshold t (which determines number found)
– Words size can therefore be longer without losing

sensitivity: AA - 3-7 and DNA ~12
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BLAST Process

• 2. Extend hits:
– extend each hit to a local maximal segment
– extension of initial w size hit may increase or decrease

the score
– terminate extension when a threshold is exceeded
– find the best ones (HSP)

• This first version of Blast did not allow gaps….
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(Improved) BLAST

Altshul, Madden, Schaffer, Zhang, Zhang, Miller & Lipman
(1997) Gapped BLAST and PSI-BLAST:a new generation

of protein database search programs. Nucleic Acids
Research 25:3389-3402

• Improved algorithms allowing gaps
– these have superceded the older version of BLAST
– two versions: Gapped and PSI BLAST
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(Improved) BLAST Process

• Find words or hot-spots
– search each diagonal for two w length words such that

score >=t
– future expansion is restricted to just these initial words
– we reduce the threshold t to allow more initial words to

progress to the next stage
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(Improved) BLAST Process

• Allow local alignments with gaps
– allow the words to merge by introducing gaps
– each new alignment is comprises two words with a

number of gaps
– unlike FASTA does not restrict the search to a narrow

band
– as only two word hits are expanded this makes the new

blast about 3x faster
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PSI-BLAST

• Iterative version of BLAST for searching for
protein domains
– Uses a dynamic substitution matrix
– Start with a normal blast
– Take the results and use these to ‘tweak’ the matrix
– Re-run the blast search until no new matches occur

• Good for finding distantly related sequences but
high frequency of false-positive hits
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BLAST Programs

• blastp compares an amino acid query sequence against a 
protein sequence database.

• blastn compares a nucleotide query sequence against a 
nucleotide sequence database.

• blastx compares a nucleotide query sequence translated in all 
reading frames against a protein sequence database.

• tblastn compares a protein query sequence against a nucleotide
sequence database dynamically translated in all reading 
frames.

• tblastx compares the six-frame translations of a nucleotide query 
sequence against the six-frame translations of a nucleotide 
sequence database. (SLOW)
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Go try them out!

• Links to NCBI and EBI are on the course web site

• Some test sequences will be posted on the course
web site
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Alignment Heuristics

• Dynamic Programming is better but too slow
• FASTA and BLAST based on several assumptions

about good alignments
– substitutions more likely than gaps
– good alignments have runs of identical matches

• FASTA good for DNA sequences but slower
• BLAST better for amino acid sequences and pretty

good for DNA, fastest.

Armstrong, 2006 Bioinformatics 2

Biological Databases (sequences)
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Biological Databases

• Introduction to Sequence Databases
• Overview of primary query tools and the databases

they use (e.g. databases used by BLAST and
FASTA)

• Demonstration of common queries
• Interpreting the results
• Overview of annotated ‘meta’ or ‘curated’

databases
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DNA Sequence Databases

• Raw DNA (and RNA) sequence
• Submitted by Authors
• Patent, EST, Gemomic sequences
• Large degree of redundancy
• Little annotation
• Annotation and Sequence errors!
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Main DNA DBs

• Genbank US
• EMBL EU
• DDBJ Japan

• Celera genomics Commercial DB
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EMBL

• Sources for sequence include:
– Direct submission - on-line submission tools
– Genome sequencing projects
– Scientific Literature - DB curators and editorial

imposed submission
– Patent applications
– Other Genomic Databases, esp Genbank
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International Nucleotide Sequence
Database Collaboration

• Partners are EMBL, Genbank & DDBJ
• Each collects sequence from a variety of sources
• New additions to any of the three databases are

shared to the others on a daily basis.
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Limited annotation

• Unique accession number
• Submitting author(s)
• Brief annotation if available
• Source (cDNA, EST, genomic etc)
• Species
• Reference or Patent details
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EMBL file tags

     ID - identification             (begins each entry; 1 per entry)
     AC - accession number           (>=1 per entry)
     SV - new sequence identifier    (>=1 per entry)
     DT - date                       (2 per entry)
     DE - description                (>=1 per entry)
     KW - keyword                    (>=1 per entry)
     OS - organism species           (>=1 per entry)
     OC - organism classification    (>=1 per entry)
     OG - organelle                  (0 or 1 per entry)
     RN - reference number           (>=1 per entry)
     RC - reference comment          (>=0 per entry)
     RP - reference positions        (>=1 per entry)
     RX - reference cross-reference  (>=0 per entry)
     RA - reference author(s)        (>=1 per entry)
     RT - reference title            (>=1 per entry)
     RL - reference location         (>=1 per entry)
     DR - database cross-reference   (>=0 per entry)
     FH - feature table header       (0 or 2 per entry)
     FT - feature table data         (>=0 per entry)
     CC - comments or notes          (>=0 per entry)
     XX - spacer line                (many per entry)
     SQ - sequence header            (1 per entry)
     bb - (blanks) sequence data     (>=1 per entry)
     // - termination line           (ends each entry; 1 per entry)
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16,759,535,577 bases (27/1/02)
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35,602,556,374 bases (17/1/03)
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53,958,991,118 bases (24/1/04)
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Jan ‘06   117,599,582,673bp
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Bases by organism 02
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Bases by organism 03
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Bases by organism 04
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Bases by organism 06

other

human

mouse

rat

http://www3.ebi.ac.uk/Services/DBStats/
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17 Subdivisions
ESTs                    EST
Bacteriophage           PHG
Fungi                   FUN
Genome survey           GSS
High Throughput cDNA    HTC
High Throughput Genome  HTG
Human                   HUM
Invertebrates           INV
Mus musculus            MUS
Organelles              ORG
Other Mammals           MAM
Other Vertebrates       VRT
Plants                  PLN
Prokaryotes             PRO
Rodents                 ROD
STSs                    STS
Synthetic               SYN
Unclassified            UNC
Viruses                 VRL
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ESTs

• Expressed Sequence Tags
– short mRNA samples from tissues
– cloned and sequenced
– single read
– approx 1/3 of the database
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HTG

• High throughput genomic sequences
– Partial sequences obtained during genome sequencing.
– Around 1/3 of the database
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Specialist DNA Databases

• Usually focus on a single organism or small
related group

• Much higher degree of annotation
• Linked more extensively to accessory data

– Species specific:
• Drosophila: FlyBase,
• C. elegans: AceDB

– Other examples include Mitochondrial DNA, Parasite
Genome DB
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• Includes the entire annotated genome searchable
by BLAST or by text queries

• Also includes a detailed ontology or standard
nomenclature for Drosophila

• Also provides information on all literature,
researchers, mutations, genetic stocks and
technical resources.

• Full mirror at EBI

flybase.bio.indiana.edu
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Protein DBs

• Primary Sequence DBs
– Swiss-Prot, TrEMBL, GenPept

• Protein Structure DBs
– PDB, MSD

• Protein Domain Homology DBs
– InterPro, CluSTr
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UniProtKB/Swiss-Prot

• Consists of protein sequence entries
• Contains high-quality annotation
• Is non-redundant
• Cross-referenced to many other databases
• 104,559 sequences in Jan 02
• 120,960 sequences in Jan 03
• 194,317 sequences in Sep 05 (latest)
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Swis-Prot by Species (‘03)

  ------  ---------  --------------------------------------------
  Number  Frequency  Species
  ------  ---------  --------------------------------------------
       1       8950  Homo sapiens (Human)
       2       6028  Mus musculus (Mouse)
       3       4891  Saccharomyces cerevisiae (Baker's yeast)
       4       4835  Escherichia coli
       5       3403  Rattus norvegicus (Rat)
       6       2385  Bacillus subtilis
       7       2286  Caenorhabditis elegans
       8       2106  Schizosaccharomyces pombe (Fission yeast)
       9       1836  Arabidopsis thaliana (Mouse-ear cress)
      10       1773  Haemophilus influenzae
      11       1730  Drosophila melanogaster (Fruit fly)
      12       1528  Methanococcus jannaschii
      13       1471  Escherichia coli O157:H7
      14       1378  Bos taurus (Bovine)
      15       1370  Mycobacterium tuberculosis

~20%

~13%
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Swis-Prot by Species (Oct ‘05)
  ------  ---------  --------------------------------------------
  Number  Frequency  Species
  ------  ---------  --------------------------------------------
       1      12860  Homo sapiens (Human)
       2       9933  Mus musculus (Mouse)
       3       5139  Saccharomyces cerevisiae (Baker's yeast)
       4       4846  Escherichia coli
       5       4570  Rattus norvegicus (Rat)
       6       3609  Arabidopsis thaliana (Mouse-ear cress)
       7       2840  Schizosaccharomyces pombe (Fission yeast)
       8       2814  Bacillus subtilis
       9       2667  Caenorhabditis elegans
      10       2273  Drosophila melanogaster (Fruit fly)
      11       1782  Methanococcus jannaschii
      12       1772  Haemophilus influenzae
      13       1758  Escherichia coli O157:H7
      14       1653  Bos taurus (Bovine)
      15       1512  Salmonella typhimurium
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UniProtKB/TrEMBL

• Computer annotated Protein DB
• Translations of all coding sequences in EMBL

DNA Database
• Remove all sequences already in Swiss-Prot
• November 01: 636,825 peptides
• Jan 17th 2003: 728713 peptides
• TrEMBL new is a weekly update
• GenPept is the Genbank equivalent
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SNPs

• Biggest growth area right now is in mutation
databases

• www.ncbi.nlm.nih.gov/About/primer/snps.html
• Polymorphisms estimates at between 1:100 1:300

base pairs (normal human variation)
• Databases include true SNPs (single bases) and

larger variations (microsatellites, small indels)
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dbSNP

• “The database grows at 90 SNPs per month”
• 125 versions since start in 1998
• Currently 47 million SNPs in latest release
• 15 million added between version 124 and 125
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Database Search Methods

• Text based searching of annotations and related
data: SRS, Entrez

• Sequence based searching: BLAST, FASTA,
MPSearch
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SRS

• Sequence Retrieval System
– Powerful search of EMBL annotation
– Linked to over 80 other data sources
– Also includes results from automated searches
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SRS data sources

• Primary Sequence: EMBL, SwissProt
• References/Literature: Medline
• Protein Homology: Prosite, Prints
• Sequence Related: Blocks, UTR, Taxonomy
• Transcription Factor: TFACTOR, TFSITE
• Search Results: BLAST, FASTA, CLUSTALW
• Protein Structure: PDB
• Also, Mutations, Pathways, other specialist DBs
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Entrez

• Text based searching at NCBI’s Genbank
• Very simple and easy to use
• Not as flexible or extendable as SRS
• No user customisation

Armstrong, 2006 Bioinformatics 2

Sequence Based Searching

• Queries:
DNA query against DNA db
Translated DNA query against  Protein db
Translated DNA query against translated DNA db
Translated Protein query against DNA db
Protein query against Protein db

• BLAST & FASTA
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BLAST

Version Query DB
Blastn DNA DNA
Blastp Peptide Peptide
Blastx DNA Peptide
tBlastn Peptide DNA
tBlastx DNA DNA

translated
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FASTA Key Parameters

Database: Which DNA/Protein db to use.
Program: fastx3, tfasty3 etc
Matrix: Substitution score matrix e.g. Blosum50
KTUP Word length to use in search
Scores: How many results to summarise
Alignments: How many full alignments to provide
Open Gap: Penalty for opening a new gap
Extend Gap: Penalty for extending a gap by 1
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Initial Strategies

• Use a good server with up to date databases
• Run BLAST as a first choice (its quick)
• If appropriate, translated DNA or protein searches

are better.
• Refine using FASTA, SW programs or protein

prediction packages
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Scores

• The raw scores returned by Blast and FASTA are
not in themselves all that useful.

• The E-Value (expect) is the number of false
positives you would expect to find in that query. A
low E-value indicates a higher confidence level

Armstrong, 2006 Bioinformatics 2

P value

• The Probability of the observed score (probability
that it happened by chance) can be calculated:

P = 1 - e-E
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Secondary Databases

• PDB
• Pfam
• PRINTS
• PROSITE
• ProDom
• SMART
• TIGRFAMs
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PDB

• Molecular Structure Database (EBI)
• Contains the 3D structure coordinates of ‘solved’

protein sequences
– X-ray crystallography
– NMR spectra

• 19749 protein structures
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Multiple Sequence Alignment

• What and Why?
• Dynamic Programming Methods
• Heuristic Methods
• A further look at Protein Domains
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Multiple Alignment

• Normally applied to proteins
• Can be used for DNA sequences
• Finds the common alignment of >2 sequences.
• Suggests a common evolutionary source between

related sequences based on similarity
– Can be used to identify sequencing errors
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Multiple Alignment of DNA

• Take multiple sequencing runs
• Find overlaps

– variation of ends-free alignment

• Locate cloning or sequencing errors
• Derive a consensus sequence
• Derive a confidence degree per base
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Consensus Sequences

• Look at several aligned sequences and derive the most
common base for each position.
– Several ways of representing consensus sequences
– Many consensus sequences fail to represent the variability at each

base position.
– Largely replaced by Sequence Logos but the term is often mis-

applied
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Sequence Logos
• Example, from an alignment of the TATA box in yeast

genes:

We now have a
confidence level
for each base at
each position
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Multiple Alignment of Proteins

• Multiple Alignment of Proteins
• Identify Protein Families
• Find conserved Protein Domains
• Predict evolutionary precursor sequences
• Predict evolutionary trees
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Protein Families

• Proteins are complex structures built from
functional and structural sub-units
– When studying protein families it is evident that some

regions are more heavily conserved than others.
– These regions are generally important for the structure

or function of the protein
– Multiple alignment can be used to find these regions
– These regions can form a signature to be used in

identifying the protein family or functional domain.
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Protein Domains

• Evolution conserves sequence patterns due to
functional and structural constraints.

• Different methods have been applied to the
analysis of these regions.

• Domains also known by a range of other names:

motifs patterns prints blocks
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Multiple Alignment

• OK we now have an idea WHY we want to try
and do this

• What does a multiple alignment look like?
• How could we do multiple alignments
• What are the practical implications
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Multiple alignment table

A consensus character is the one that minimises the distance
between it and all the other characters in the column

Conservatived or Identical residues are colour coded
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Scoring Multiple Alignments

• We need to score on columns with more than 2 bases or
residues:

S
C
A
P
P

( )ColumnCost = 24

Multiple alignments are usually scored on cost/difference
rather than similarity
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Column Costs

• Several strategies exist for calculating the column
cost in a multiple alignment

• Simplest is to sum the pairwise costs of each
base/residue pair in the column using a matrix
(e.g. PAM250).

• Gap scoring rules can be applied to these as well.
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Scoring Multiple Alignments

• Score = (S,C)+(S,A)+(S,A)+(S,P)+(S,P)+(C,A)+
(C,P)+(C,P)+(A,P)+(A,P)+(P,P)

S
C
A
P
P

( )ColumnCost = 24

Known as the sum-of-pairs scoring method
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Sum-of-pairs cost method (SP)

• Score = (S,C)+(S,-)+(S,A)+(S,P)+(S,P)+  
(-,A)+(-,P)+(-,P)+(A,P)+(A,P)+(P,P)

S
-
A
P
P

( )ColumnCost = 24

Still works with gaps using whatever gap penalty you want
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Multiple Alignment Cost

• Sum of pairs is a simple method to get a score for
each column in a multiple alignment

• Based on matrices and gap penalties used for
pairwise sequence alignment

• The score of the alignment is the sum of each
column
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Optimal Multiple Alignment

• The best alignment is generally the one with the
lowest score (i.e. least difference)
– depends on the scoring rules used.

• Like pairwise cases, each alignment represents a
path through a matrix

• For multiple alignment, the matrix is n-
dimensional
– where n=number of sequences
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(Murata, Richardson and Sussman 1999)
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Contrasting pairwise and multiple alignments

Lets compare pairwise with three sequences.

(0,0) (1,-)

(-,1) (1,1)
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Contrasting pairwise and multiple alignments

Lets compare pairwise with three sequences.

(0,0) (1,-)

(-,1)

(-,-,1)

(0,0,0)

(-,1,-) (1,1,-)

(1,-,-)

(1,-,1)

(1,1,1)
(-,1,1)
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NP-Completeness

• A problem is solvable in polynomial time if an
algorithm exists O(nc)
– c - some constant
– n - size of the input

• Pairwise alignment is solvable in polynomial time
O(n2)

• More difficult problems are NP-complete
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Multiple alignment complexity

• For k sequences of average length n
• k dimension matrix has (n+1)k cells to compute.
• Each entry can be computer in 2k time
• Running time of the overall algorithm is:

O((2n)k)
• The real problem hits when considering protein sequences

average ~400 residues
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MA: Dynamic Programming

• We can use dynamic programming in some small
cases.

• For x sequences, build an x dimensional
hypercube.

• Solve as before using gap and substitution
penalties but remembering that there are more
routes to each cell in the hypercube
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MA: Dynamic Programming

• Space complexity is huge:
–  O(sum sequences x ave length)

• Computational complexity is huge
• In practice the DP method is only feasible for

small numbers of short strings
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Examples
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Center Star Method

• Given a set of Strings, define the center string Sc
as the string that minimises the sum of distances
from all other sequences.
– Found Sc
– Consecutively add on the other sequences so that the

alignment of each is optimal.
– Add spaces where needed to all prealigned sequences

• The center star method is within 2 fold accuracy
of true dynamic solution
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Iterative pairwise alignment

• In CSA we try to align the chosen center string
with all the others in no particular order.

• Often some of the other sequences will be closer
to each other and form clusters

• Tricky part is deciding how to define close and
how to cluster them
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How do we cluster sequences?
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Building trees

• Need to define how the sequences are related to
one another.

• Most use the distances between pairs in the set of
sequences.

• Key parameter is in defining the distance score.
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Clustering Methods

• Unweighted Pair Group Method using Arithmetic
averages or UPGMA

• Simple and based on distance pairs
• Each stage joins two clusters creating a new node
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An example tree

1                         2             3

Sequences 1 and 2 are the closest related.
Each sequence lies on its own  leaf
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UPGMA

• Assign each sequence to its own cluster
• Create a leaf at height zero for each cluster
• Determine the two closest clusters
• Align the two sequences to define a new cluster at

the next level up.
• Remove the two pre existing clusters and start

over.
• End at two clusters
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Drawbacks of UPGMA

Correct tree   Incorrect by UPGMA

   1                            4           1         4       2         3

  2      3
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Nearest Neighbour

• Similar to the UPGMA algorithm
• UPGMA works on distance between sequence

pairs alone
• Nearest Neighbour compensates for the path

through the tree to correct situations where
distance alone would incorrectly pair two
sequences
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Back to multiple alignment heuristics
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Iterative Pairwise Alignment

• Can be used as a strategy for growing groups of
profiles from multiple sequences

• This approach uses pairwise alignment scores to
add one additional sequence at a time to a growing
multiple alignment.
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Iterative Pairwise Alignment

• First align all pairs of strings where one is already
in a multiple alignment and one is aligned.

• Find the closest matches.
• Align the unassigned sequence with the family

profile of the closest group
• Realign the group and get a new profile.
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Feng-Doolittle

• Feng-Doolittle 1987 Journal of Molecular Evolution
25:351-360

• The key principal is that the two most similar sequences in
a multiple alignment are the most recently diverged.

• Therefore the pairwise alignment of these two sequences is
the most reliable of the entire group

• Gaps present in the alignment should therefore be
preserved in the multiple alignment.
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Feng-Doolittle

• Calculate the pairwise alignment scores for each sequence
• Construct a tree using these distances
• Traverse the nodes of the tree in order of addition (most

similar first)
• Progressively align the sequences starting with the most

similar:
• Once a gap is established in the multiple alignment it stays.
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ClustalW

• Uses a modification of the Feng-Doolittle
algorithm

• Very common software package for multiple
alignment
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ClustalW

• Starts by calculating pairwise alignments and converting
scores to distances

• Uses a neighbour joining algorithm to build a tree from the
distances

• Aligns sequences to each other
• Aligns sequences to profiles
• Aligns profiles to profiles
• Can output multiple alignment as well a predicted

evolutionary tree
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MSA

• Exploits the fact that closely aligned sequence
paths will be close to the main diagonal on a DP
table.

• Estimates a good solution, removes cells from the
hypercube where the score could not feasibly pass
through them.
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CAP

• Contig Assembly Program
• Designed to optimise alignments between multiple

DNA sequences that are suspected to overlap.
• Uses a fast heuristic prescreen then finishes using

a dynamic programming approach.
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CAP

• Takes all the sequences and split into short
fragments

• Eliminate fragment pairs that could not possibly
overlap

• The dynamic programming algorithm is used to
find the maximal scoring overlaps

• Scores are weighted so that sequencing errors are
low cost and mutations higher
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Consensus Sequences

• The consensus sequence is the concatenation of
the consensus characters

• The alignment error of the multiple alignment is
the sum of the distance costs of each consensus
character in the consensus sequence.
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Scoring Multiple Alignments

• Distance from Consensus
– In each column, count the number of characters that are

different from the consensus sequence.

• Sum of Pairs (covered already)
– Sum the pairwise distances between all sequence pairs
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Scoring Multiple Alignments

• Evolutionary Tree alignment
– The weight of the lightest tree that can be constructed

from the sequences
– The weight is defined as the the number of changes that

correspond to two adjacent nodes in the tree summed
over all pairs.
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Consensus Sequences

• Given an optimal alignment between >2
sequences, how do we find the consensus
sequence?

• Take a multiple alignment in columns of
characters
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Multiple alignment table

The consensus character is the one that minimises the
distance between it and all the other characters in the column
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Finally some examples

• We are interested in the protein DLG
– DLG is a molecular scaffold
– 1 gene in Drosophila
– 4 human genes (DLG1-4 with synonyms)

• Tarpey et al 2004 found mutations linking
DLG3/Sap102 to Mental Retardation

• Obtained sequences for all 5 proteins
• Run through ClustalW (results on-line)

Armstrong, 2006 Bioinformatics 2

Another example

• We are also interested in PDE4B
– PDE4B is a phosphodiesterase
– 1 gene in Drosophila (dunce) linked to memory
– multiple human genes closest PDE4B

• Millar et al 2005 found a link between PDE4B and
schizophrenia

• A database search funds many possible PDE4B
proteins, need to make sense of it all…


