
1

Armstrong, 2005 BioInformatics 2

Bio2

Pair-wise Sequence Alignment

Armstrong, 2005 BioInformatics 2

How do we do it?

• Like everything else there are several methods and
choices of parameters

• The choice depends on the question being asked
– What kind of alignment?
– Which substitution matrix is appropriate?
– What gap-penalty rules are appropriate?
– Is a heuristic method good enough?

Armstrong, 2005 BioInformatics 2

Sequence Alignment Intro

ACCGGTATCCTAGGAC

||| |||| ||||||

ACC--TATCTTAGGAC

• Way of comparing two sequences and assessing the
similarity or difference between them

• Can align DNA or Protein sequences
• Matches/substitutions scored from a look-up matrix
• Insertion/deletions scored by some gap-penalty formula

Armstrong, 2005 BioInformatics 2

BLOSUM 62 Matrix

Armstrong, 2005 BioInformatics 2

Working Parameters

• For proteins, using the affine gap penalty rule and
a substitution matrix:

Query Length Matrix Gap (open/extend)

<35 PAM-30 9,1
35-50 PAM-70 10,1
50-85 BLOSUM-80 10,1
>85 BLOSUM-62 11,1

Armstrong, 2005 BioInformatics 2

How do we do it?

• A Dynamic Programming algorithm is used to
find the optimal scored alignment (and non-
optimal scores)
– MPSearch

• Heuristic approaches improve speed but sacrifice
some accuracy
– BLAST
– FASTA

2

Armstrong, 2005 BioInformatics 2

Alignment Types

• Global: used to compare to similar sized
sequences.

• Local: used to find similar subsequences.

• Ends Free: used to find joins/overlaps.

Armstrong, 2005 BioInformatics 2

Global Alignment

• Two sequences of similar length
• Finds the best alignment of the two sequences
• Finds the score of that alignment
• Includes ALL bases from both sequences in the

alignment and the score.

• Needleman-Wunsch algorithm

Armstrong, 2005 BioInformatics 2

Needleman-Wunsch algorithm

• Gaps are inserted into, or at the ends of each
sequence.

• The sequence length (bases+gaps) are identical for
each sequence

• Every base or gap in each sequence is aligned with
a base or a gap in the other sequence

Armstrong, 2005 BioInformatics 2

Needleman-Wunsch algorithm

• Consider 2 sequences S and T
• Sequence S has n elements
• Sequence T has m elements
• Gap penalty ?

Armstrong, 2005 BioInformatics 2

How do we score gaps?

ACCGGTATCC---GAC
||| |||| |||

ACC--TATCTTAGGAC

• Constant: Length independent weight
• Affine: Open and Extend weights.
• Convex: Each additional gap contributes less
• Arbitrary: Some arbitrary function on length

– Lets score each gap as –1 times length

Armstrong, 2005 BioInformatics 2

Needleman-Wunsch algorithm

• Consider 2 sequences S and T
• Sequence S has n elements
• Sequence T has m elements
• Gap penalty –1 per base (arbitrary gap penalty)
• An alignment between base i in S and a gap in T is

represented: (Si,-)
• The score for this is represented : σ(Si,-) = -1

3

Armstrong, 2005 BioInformatics 2

Needleman-Wunsch algorithm

• Substitution/Match matrix for a simple alignment
• Several models based on probability….

2-1-1-1T

-12-1-1G

-1-12-1C

-1-1-12A

TGCA

Armstrong, 2005 BioInformatics 2

Needleman-Wunsch algorithm

• Substitution/Match matrix for a simple alignment
• Simple identify matrix (2 for match, -1 for

mismatch)
• An alignment between base i in S and base j in T

is represented: (Si,Tj)
• The score for this occurring is represented: σ(Si,Tj)

Armstrong, 2005 BioInformatics 2

Needleman-Wunsch algorithm

• Set up a array V of size n+1 by m+1
• Row 0 and Column 0 represent the cost of adding

gaps to either sequence at the start of the
alignment

• Calculate the rest of the cells row by row by
finding the optimal route from the surrounding
cells that represent a gap or match/mismatch
– This is easier to demonstrate than to explain

Armstrong, 2005 BioInformatics 2

Needleman-Wunsch algorithm

– lets start by trying out a simple example alignment:

S = ACCGGTAT
T = ACCTATC

Armstrong, 2005 BioInformatics 2

Needleman-Wunsch algorithm

– Get lengths

S = ACCGGTAT
T = ACCTATC

Length of S = m = 8
Length of T = n = 7

(lengths approx equal so OK for Global Alignment)

Armstrong, 2005 BioInformatics 2

Create array m+1 by n+1
(i.e. 9 by 8)

4

Armstrong, 2005 BioInformatics 2

Add on bases from each sequence
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

Armstrong, 2005 BioInformatics 2

Represent scores for gaps in row/col 0

-10
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-2

Armstrong, 2005 BioInformatics 2

Represent scores for gaps in row/col 0

-7
-6
-5
-4
-3
-2
-1

-10
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2

Armstrong, 2005 BioInformatics 2

For each cell consider the ‘best’ path

-7
-6
-5
-4
-3
-2
-1

-10
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2

Armstrong, 2005 BioInformatics 2

For each cell consider the ‘best’ path

-1
-10

 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-3-2

(S1,T0) & σ(-,T1) = -1
Running total (-1+-1)=-2

Armstrong, 2005 BioInformatics 2

For each cell consider the ‘best’ path

-1
-10

 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-3-2

(S1,T0) & σ(-,T1) = -1
Running total (-1+-1)=-2

(S0, T1) & σ(S1,-) = -1
Running total (-1+-1)=-2

5

Armstrong, 2005 BioInformatics 2

For each cell consider the ‘best’ path

-1
-10

 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-3-2

(S1,T0) & σ(-,T1) = -1
Running total (-1+-1)=-2

(S0, T1) & σ(S1,-) = -1
Running total (-1+-1)=-2

(S0,T0) & σ(S1,T1) = 2
Running total (0+2)=2

Armstrong, 2005 BioInformatics 2

Choose and record ‘best’ path

2-1
-10

 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-3-2

Armstrong, 2005 BioInformatics 2

Choose and record ‘best’ path

2-1
-10

 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-3-2

(S2,T0) & σ(-,T1)
Running total (-2+-1)=-3

(S1,T1) & σ(S2,-)
Running total (2+-1)=1

(S1,T0) & σ(S2,T1)
Running total (-1+-1)=-2

1

Armstrong, 2005 BioInformatics 2

Continue….

-7
-6
-5
-4
-3
-2

12-1
-10

 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

Armstrong, 2005 BioInformatics 2

Continue….

-7
-6
-5
-4
-3

-2-101-2
-512-1

-10
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

1 4 3 2

Armstrong, 2005 BioInformatics 2

Continue….

-7
-6
-5
-4

1234563-3
-2-101-2
-512-1

-10
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

1 4 3 2
0

6

Armstrong, 2005 BioInformatics 2

Continue….

-7
-6
-5

4564452-1-4
1234563-3
-2-101-2
-512-1

-10
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2005 BioInformatics 2

Continue….

-7
-6

7853441-2-5
4564452-1-4
1234563-3
-2-101-2
-512-1

-10
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2005 BioInformatics 2

Continue….

-7
10753330-3-6
7853441-2-5
4564452-1-4
1234563-3
-2-101-2
-512-1

-10
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2005 BioInformatics 2

Finally.

964222-1-4-7
10753330-3-6
7853441-2-5
4564452-1-4
1234563-3
-2-101-2
-512-1

-10
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

1 4 3 2
0

= Score

Armstrong, 2005 BioInformatics 2

Finally.

964222-1-4-7
10753330-3-6
7853441-2-5
4564452-1-4
1234563-3
-2-101-2
-512-1

-10
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2005 BioInformatics 2

We recreate the alignment using by following the pointers
back through the array to the origin

964222-1-4-7
10753330-3-6
7853441-2-5
4564452-1-4
1234563-3
-2-101-2
-512-1

-10
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

1 4 3 2
0

7

Armstrong, 2005 BioInformatics 2

964222-1-4-7
10753330-3-6
7853441-2-5
4564452-1-4
1234563-3
-2-101-2
-512-1

-10
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

1 4 3 2
0

 - (S)

 C (T)

Armstrong, 2005 BioInformatics 2

 T- (S)
 |
 TC (T)

964222-1-4-7
10753330-3-6
7853441-2-5
4564452-1-4
1234563-3
-2-101-2
-512-1

-10
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2005 BioInformatics 2

 AT- (S)
 ||
 ATC (T)

964222-1-4-7
10753330-3-6
7853441-2-5
4564452-1-4
1234563-3
-2-101-2
-512-1

-10
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2005 BioInformatics 2

 TAT- (S)
 |||
 TATC (T)

964222-1-4-7
10753330-3-6
7853441-2-5
4564452-1-4
1234563-3
-2-101-2
-512-1

-10
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2005 BioInformatics 2

 GTAT- (S)
 |||
 -TATC (T)

964222-1-4-7
10753330-3-6
7853441-2-5
4564452-1-4
1234563-3
-2-101-2
-512-1

-10
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2005 BioInformatics 2

 GGTAT- (S)
 |||
 --TATC (T)

964222-1-4-7
10753330-3-6
7853441-2-5
4564452-1-4
1234563-3
-2-101-2
-512-1

-10
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

1 4 3 2
0

8

Armstrong, 2005 BioInformatics 2

 CGGTAT- (S)
 | |||
 C--TATC (T)

964222-1-4-7
10753330-3-6
7853441-2-5
4564452-1-4
1234563-3
-2-101-2
-512-1

-10
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2005 BioInformatics 2

 CCGGTAT- (S)
 || |||
 CC--TATC (T)

964222-1-4-7
10753330-3-6
7853441-2-5
4564452-1-4
1234563-3
-2-101-2
-512-1

-10
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2005 BioInformatics 2

 ACCGGTAT- (S)
 ||| |||
 ACC--TATC (T)

964222-1-4-7
10753330-3-6
7853441-2-5
4564452-1-4
1234563-3
-2-101-2
-512-1

-10
 A C C G G T A T (S)

A

C

C

T

A

T

C

(T)

-8-7-6-5-4-3-2
0 -1 -2 -3 -4

1 4 3 2
0

Armstrong, 2005 BioInformatics 2

Checking the result

• Our alignment considers ALL bases in each
sequence

• 6 matches = 12 points, 3 gaps = -3 points
• Score = 9 confirmed.

 ACCGGTAT- (S)
 ||| |||
 ACC--TATC (T)

Armstrong, 2005 BioInformatics 2

A bit more formally..
Base conditions: V(i,0) = σ(Sk,-)

V(0,j) = σ(-,Tk)∑

∑
i

j

k=0

k=0

Recurrence relation: for 1<=i <= n, 1<=j<=m:

V(i,j) = max {V(i-1,j-1) + σ(Si,Tj)
V(i-1,j) + σ(Si,-)
V(i,j-1) + σ(-,Tj)

Armstrong, 2005 BioInformatics 2

Time Complexity

• Each cell is dependant on three others and the two
relevant characters in each sequence

• Hence each cell takes a constant time
• (n+1) x (m+1) cells

• Complexity is therefore O(nm)

9

Armstrong, 2005 BioInformatics 2

Space Complexity

• To calculate each row we need the current row
and the row above only.

• Therefore to get the score, we need O(n+m) space

• However, if we need the pointers as well, this
increases to O(nm) space

• This is a problem for very long sequences
– think about the size of whole genomes

Armstrong, 2005 BioInformatics 2

Global alignment in linear space

• Hirschberg 1977 applied a ‘divide and conquer’
algorithm to Global Alignment to solve the
problem in linear space.

• Divide the problem into small manageable chunks
• The clever bit is finding the chunks

Armstrong, 2005 BioInformatics 2

dividing...

Compute matrix V(A,B) saving the values for n/2
th row

- call this matrix F
Compute matrix V(Ar,Br) saving the values for n/2

th row
- call this matrix B

Find column k so that the crossing point (n/2,k) satisfies:
F(n/2,k) + B(n/2,m-k) = F(n,m)

Now we have two much smaller problems:
(0,0) -> (n/2,k) and (n,m) -> (n/2,m-k)

Armstrong, 2005 BioInformatics 2

Hirschberg’s divide and conquer approach
(0,0)

(m,n)

n/2

Armstrong, 2005 BioInformatics 2

Complexity

• After applying Hirschberg’s divide and conquer approach
we get the following:

– Complexity O(mn)

– Space O(min(m,n))

• For the proofs, see D.S. Hirschberg. (1977) Algorithms for
the longest common subsequence problem. J. A.C.M 24:
664-667

Armstrong, 2005 BioInformatics 2

OK where are we?

• The Needleman-Wunsch algorithm finds the
optimum alignment and the best score.
– NW is a dynamic programming algorithm

• Space complexity is a problem with NW
• Addressed by a divide and conquer algorithm
• What about local and ends-free alignments?

10

Armstrong, 2005 BioInformatics 2

Smith-Waterman algorithm

• Between two sequences, find the best two
subsequences and their score.

• We want to ignore badly matched sequence
• Use the same types of substitution matrix and gap

penalties
• Use a modification of the previous dynamic

programming approach.

Armstrong, 2005 BioInformatics 2

Smith-Waterman algorithm

• If Si matches Tj then σ(Si,Tj) >=0
• If they do not match or represent a gap then <=0

• Lowest allowable value of any cell is 0
• Find the cell with the highest value (i,j) and

extend the alignment back to the first zero value
• The score of the alignment is the value in that cell
• A quick example if best...

Armstrong, 2005 BioInformatics 2

min value of any cell is 0

0
0
0
0
0
0
0

000000000
 A C C G G T A T (S)

T

T

G

T

A

T

C

(T)

Armstrong, 2005 BioInformatics 2

min value of any cell is 0

0
0
0
0
0

312000000
212000000
000000000

 A C C G G T A T (S)

T

T

G

T

A

T

C

(T)

Armstrong, 2005 BioInformatics 2

min value of any cell is 0

741234300
852000110
563000120
334110000
211220000
312000000
212000000
000000000

 A C C G G T A T (S)

T

T

G

T

A

T

C

(T)

Armstrong, 2005 BioInformatics 2

Find biggest cell and map alignment from there

741234300
852000110
563000120
334110000
211220000
312000000
212000000
000000000

 A C C G G T A T (S)

T

T

G

T

A

T

C

(T)

11

Armstrong, 2005 BioInformatics 2

GTAT(S)
||||
GTAT(T)

741234300
852000110
563000120
334110000
211220000
312000000
212000000
000000000

 A C C G G T A T (S)

T

T

G

T

A

T

C

(T)

Armstrong, 2005 BioInformatics 2

Smith-Waterman cont’d

• Complexity
– Time is O(nm) as in global alignments
– Space is O(nm) as in global alignments

– A mod of Hirschbergs algorithm allows O(n+m)
(n+m) as two rows need to be stored at a time instead of
one as in the global alignment.

Armstrong, 2005 BioInformatics 2

A bit more formally..
Base conditions: ∀i,j. V(i,0) = 0, V(0,j) = 0

Recurrence relation: for 1<=i <= n, 1<=j<=m:

V(i,j) = max { 0
V(i-1,j-1) + σ(Si,Tj)
V(i-1,j) + σ(Si,-)
V(i,j-1) + σ(-,Tj)

Compute i* and j* V(i *,j *) = max 1<=i<=n,1<=j<=m V(i,j)

Armstrong, 2005 BioInformatics 2

Ends-free alignment

• Find the overlap between two sequences such start
the start of one overlaps is in the alignment and
the end of the other is in the alignment.

• Essential to DNA sequencing strategies.
– Building genome fragments out of shorter sequencing

data.

• Another variant of the Global Alignment Problem

Armstrong, 2005 BioInformatics 2

Ends-free alignment

• Set the initial conditions to zero weight
– allow indels/gaps at the ends without penalty

• Fill the array/table using the same recursion model
used in global/local alignment

• Find the best alignment that ends in one row or
column
– trace this back

Armstrong, 2005 BioInformatics 2

min value row0 & col0 is 0

555644100
6564452-10
743453300
852123410
563000120
2341011-10
-1012-1-1-1-10
000000000

 G T T A C T G T (S)

C

T

G

T

A

T

C

(T)

12

Armstrong, 2005 BioInformatics 2

Find the best ‘end’ point in an end col or row

555644100
6564452-10
743453300
852123410
563000120
2341011-10
-1012-1-1-1-10
000000000

 G T T A C T G T (S)

C

T

G

T

A

T

C

(T)

Armstrong, 2005 BioInformatics 2

Trace the best route from there to the origin and end

555644100
6564452-10
743453300
852123410
563000120
2341011-10
-1012-1-1-1-10
000000000

 G T T A C T G T (S)

C

T

G

T

A

T

C

(T)

Armstrong, 2005 BioInformatics 2

GTTACTGT---(S)
 ||||
----CTGTATC(T)

555644100
6564452-10
743453300
852123410
563000120
2341011-10
-1012-1-1-1-10
000000000

 G T T A C T G T (S)

C

T

G

T

A

T

C

(T)

Armstrong, 2005 BioInformatics 2

A bit more formally..
Base conditions: ∀i,j. V(i,0) = 0, V(0,j) = 0

Recurrence relation: for 1<=i <= n, 1<=j<=m:

V(i,j) = max {V(i-1,j-1) + σ(Si,Tj)
V(i-1,j) + σ(Si,-)
V(i,j-1) + σ(-,Tj)

Search for i* such that: V(i*,m)=max1<=i<=n,m V(i,j)
Search for j* such that: V(n,j*)=max1<=j<=n,m V(i,j)

Define alignment score V(S,T) = max{V(n,j*)
V(i*,m)

Armstrong, 2005 BioInformatics 2

Summary so far...

• Dynamic programming algorithms can solve
global, local and ends-free alignment

• They give the optimum score and alignment using
the parameters given

• Divide and conquer approaches make the space
complexity manageable for small-medium sized
sequences

Armstrong, 2005 BioInformatics 2

Dynamic Programming Issues

• For huge sequences, even linear space constraints
are a problem.

• We used a very simple gap penalty
• The Affine Gap penalty is most commonly used.

– Cost to open a gap
– Cost to extend an open gap

• Need to track and evaluate the ‘gap’ state in the
array

13

Armstrong, 2005 BioInformatics 2

Tracking the gap state

• We can model the matches and gap insertions as a
finite state machine:

Taken from Durbin, chapter 2.4

Armstrong, 2005 BioInformatics 2

Tracking the gap state

• Working along the alignment process...

Taken from Durbin, chapter 2.4

Armstrong, 2005 BioInformatics 2

• When searching multiple genomes, the sizes still
get too big!

• Several approaches have been tried:
• Use huge parallel hardware:

– Distribute the problem over many CPUs
– Very expensive

• Implement in Hardware
– Cost of specialist boards is high
– Has been done for Smith-Waterman on SUN

Real Life Sequence Alignment

Armstrong, 2005 BioInformatics 2

• Use a Heuristic Method
– Faster than ‘exact’ algorithms
– Give an approximate solution
– Software based therefore cheap

• Based on a number of assumptions:

Real Life Sequence Alignment

Armstrong, 2005 BioInformatics 2

Assumptions for Heuristic Approaches

• Even linear time complexity is a problem for large
genomes

• Databases can often be pre-processed to a degree
• Substitutions more likely than gaps
• Homologous sequences contain a lot of

substitutions without gaps which can be used to
help find start points in alignments

Armstrong, 2005 BioInformatics 2

Conclusions

• Dynamic programming algorithms are expensive
but they give you the optimum alignment and
exact score

• Choice of GAP penalty and substitution matrix are
critically important

• Heuristic approaches are generally required for
high throughput or very large alignments

