
Lab 1

Hanz Cuevas Velásquez, Bob Fisher
Advanced Vision

School of Informatics, University of Edinburgh

Week 2, 2018

This week’s lab sheet is primarily aimed at students who have less backgraund in Matlab. This
lab will focus on giving an introduction about how to read and write images and videos, how to
use the webcam to acquire data and some basic operations.

Before anything else, we need to go inside the folder where we downloaded the lab material using
the address bar of Matlab or using the terminal command cd in the Matlab command window.

1 Reading and writing images

We will start by reading an image in Matlab by using the command imread(’file’) where file

is the path to our desired image. In our case, the image we want to read is in the Images folder,
so, we input the following command in the command window:

Img = imread (’Images/uni.png’) ;

To observe how the imread command stored our image, we run the function whos.

whos Img

This function will return five values:

• Name

• Size

• Bytes

• Class

• Attributes

In this lab we will only focus on two of these values. The first one is the Size of the image. We
can observe that the size of our image is 1024 x 1017 x 3 which indicates that the image has 1024
rows, 1017 columns, and 3 dimensions, chromaticities or channels: R, G, and B. Each of the values
in the image represents a pixel and each pixel varies from 0 – 255. To access to each individual
dimension we run the following code:

R = Img (: , : , 1) ; % Red

G = Img (: , : , 2) ; % Green

B = Img (: , : , 3) ; % Blue

Now, we want to see the colour image and the 3 dimensions. To show multiple images in one fig-
ure or window, we have to use the command subplot(#rows, #columns, current possition),

imshow(Image) where #rows, and #columns are the number of images we want per row and col-
umn. In other words, Matlab divides the current figure into a #rows-by-#columns grid. The
current possition indicates the position of the image in the grid. For this exercise we need four
grids, so we will use a subplot of 2 rows and 2 columns. The command imshow(Image) displays
the Image in a figure. The student should write the code to show the following figure, 1:

1

Figure 1: RGB, R, G, and B images shown in a figure.

If we go to the “Data Cursor” icon and click in any white part of the RGB image, we will
see that it outputs the values of that pixel in the R, G, and B dimensions. E.g. [R, G, B]:[255

255 255]. On the other hand, if we click in any red part of the RGB image, we can observe that
these values changes and now it will show the following: [R, G, B]:[238 41 61]. These values
can also be seen in the R, G, and B images we have in the figure, however, in this case, this value
will be labeled as index.

In the second part of this lab, we will investigate the second value shown after we use the com-
mand whos. For that, we run again whos Img and observe that its Class is uint8, which means that
the image is represented by an unsigned 8 bit integer format. Sometimes, operations on images are
easier when using floating point. For example, if we use the uint8 class, and we want to subtract
one image from another, the result will be 0 everywhere the value of the second image is higher
than the value of the first image. Also, most of the functions in the Image Processing Toolbox
need to receive as input an image with a range of values beteen 0 and 1.

To transform an image to floating point we will use the function im2double(Img). This function
will transform an image Img into double precision rescaling the data from 0 – 1. We will run the
im2double command on the RGB image and also on the R, G, and B dimensions we created before:

Img = im2double (Img) ;
R = im2double (R) ;
G = im2double (G) ;
B = im2double (B) ;
whos Img

If we run the command whos Img, we will observe that the class has changed to double.

Another useful tool in computer vision is to transform an image to different colour spaces. Here,
we will transform our RGB image to three of the most used colour spaces: gray, HSV , and Lab. To
transform to these colour spaces, we need to run the following command, rgb2colour space(Img)

where colour space should be replaced by the name of the colour space we want E.g. rgb2hsv(Img).
Please, write the code to transform our RGB image to gray, HSV , and Lab. You should show a
figure similar to figure 2.

2

Figure 2: Different colour spaces.

Note: To show the titles on the top of the images, you have to use the command title(), E.g.
title(’RGB image’).

The final topic we will discuss, in this section, is how to save an image. An image can be saved
in two ways, the first one using imwrite(Img, ‘file’) or after showing the image with imshow,
clicking on the save icon. In this lab we will save the gray image in the Images folder using the
first method and running the following code.

imwrite (Gray , ’Images/Gray_logo.png’)

If we check our Images folder, we will find our gray image.

2 Reading and writing videos

As seen above, Matlab commands do all the difficult jobs for us, so we only have to input a little
bit of code and focus on the task or project itself. The next tool we will use is how to read and
write videos. First of all, we will run the command.

v = VideoReader (’Images/plant.avi’) ;

If you are using linux and Matlab shows you the following error: “Error using VideoReader/init
Could not read file due to an unexpected error. Reason: Unable to initialize the video obtain prop-
erties”, please refer to Appendix A to solve it.

We can show the content (frames) of the video by running the following command.

v = VideoReader (’Images/plant.avi’) ;
vidFrames=read (v) ;
nFrames=v . NumberOfFrames ; % Get the number of frames of the video

for i =1:nFrames
% showing the images in color (row ,column ,colour_space ,frame)

imshow (vidFrames (: , : , : , i)) ;
end

What we are doing here is creating a multimedia reader object using VideoReader. Then, we
extract the frames that the video has using read(), and also extract the number of frames the
video has using v.NumberOfFrames.

To save a video we will use a similar structure as before. In this case we will use command
VideoWriter and store our video using gray scale rather than colour. The video format we are
going to use is AVI, however, the student can use the different variety of formats that Matlab
offers1. Write the following code in the command window:

vw= VideoWriter (’Images/example ’) ;
open (vw) ;
for i =1:nFrames

1https://uk.mathworks.com/help/matlab/ref/videowriter.html

3

frame=rgb2gray (vidFrames (: , : , : , i)) ; % frames are grayscale

writeVideo (vw , frame) ; % writeVideo(where we will save , what we will save);

end

close (vw) ;

You can see the new video in your folder Images.

In this exercise we used the frames extracted from the original plant.avi video, transform it
to gray scale and saved them using the function writeVideo(video, frame) where video is the
video writer object we created with VideoWriter and frame is the image we are storing into the
video. In VideoWriter(’file’, type) we have to specify the path where we want our video to
be saved and the type of file we want.

3 Webcam usage

In this last section of the lab, we will focus on learning how to use use the webcam in Matlab. To
capture video from our webcam we will need the “MATLAB Support Package for USB webcams”
toolbox. For that, we write the command webcam in the command window, it will give us the fol-
lowing: “MATLAB Support Package for Webcams has not been installed. Open Support Package
Installer to install the Webcam Support Package.”. We click on the link provided by the error and
install the toolbox; you will need to create a Matlab account using your student mail to install it2.

To find the webcams that are connected to our computer we will run the command webcamlist.
This will give us a cell array with the names of the webcams we have. To access to one of the
webcams, we run the command webcam(’webcam name’) where you will replace ’webcam name’

for the name of the first webcam in the webcamlist. Finally, we can view what our webcam is
capturing by using the command preview():

webcamlist ;
cam = webcam(’webcam_name ’) ;
preview (cam) ;

% clear the webcam object

clear (’cam’) ;

It is important to free the webcam using the command clear(’cam’). The function preview,
apart from showing us what the webcam is capturing, will show us some information about the
webcam in the bottom part of the window: The time stamp, the resolution, and the frame rate.
As a final exercise, we will store 10 images captured by the webcam in our Images folder. In other
words, we will store the first 10 frames. To perform this task we will write the following code in
the command window:

cam = webcam(’webcam_name ’) ;
for i =1:10

img = snapshot (cam) ; % Gets one frame of the video

f i l e name = [’Images/Image ’ num2str (i) ’.png’] % saves the image as Image(i).png

imwrite (img , f i l e name)
imshow (img)

end

clear (’cam’)

If we go to the Images folder, we will find our 10 images, Image1.png to Image10.png. Now, the
student should use the code from Section 2 to record a video from the webcam and save it using
the commands learned in this sheet.

2https://uk.mathworks.com/mwaccount/register
More info in https://www.ed.ac.uk/information-services/computing/desktop-personal/software/main-software-
deals/matlab/getting-matlab

4

A Problem with VideoReader
If the error in Section 2 is seen, you can fix it, on a self-managed unix machine, in the following
way3. First, open your unix terminal and execute the following code4:

sudo apt−get i n s t a l l gstreamer0 .10−∗
sudo add−apt−r e p o s i t o r y ppa :mc3man/ gstf fmpeg−keep
sudo apt−get update
sudo apt−get i n s t a l l gstreamer0 .10− f fmpeg

Restart Matlab and check if it has fixed the problem. If not, try the following5:
We need to ensure that the system’s libstdc++.so.6 version is higher than the one shipped with
Matlab.

• In a terminal, navigate to matlabroot/sys/os/glnxa64 and type the following:
ls -l

Replace matlabroot by the path of the folder where you installed Matlab. The version of
the library shipping with Matlab should be libstdc++.so.6.0.17 or higher.

• Go to /usr/lib/x86 64-linux-gnu and type the following:
ls -l libstdc++*

If the resulting version is higher than 6.0.17, then continue with the following steps.

• Navigate to matlabroot/sys/os/glnxa6 and execute:
unlink libstdc++.so.6

ln -s /usr/lib/x86 64-linux-gnu/libstdc++.so.6 libstdc++.so.6

• Restart Matlab.

3Tested on Ubuntu 16.04
4Solution from: https://uk.mathworks.com/matlabcentral/answers/294258-hello-i-have-a-problem-with-

videoreader-on-matlab-r2016a-with-ubtuntu-lts16-04
5Solution from: https://www.mathworks.com/support/bugreports/1246784

5

	Reading and writing images
	Reading and writing videos
	Webcam usage
	Problem with VideoReader

