
v. 2.2

Lab 6: Kaldi Data Preparation and Feature Extraction

University of Edinburgh

March 10, 2025

The main goal of this lab is to get acquainted with Kaldi1, a state-of-the-art speech
recognition toolkit. We will begin by creating and exploring a data directory for the Wall
Street Journal (WSJ) dataset, a benchmark corpus of read speech. Then we will extract
features for WSJ upon which we can train a complete speech recognition system. Working
with Kaldi often means spending a lot of time in the shell. Notes on UNIX commands are
included in blue boxes; feel free to skip them if you’re already familiar. Most importantly,
don’t be afraid to ask questions when you get stuck.

To be clear about what exact commands need to be run or written, commands that you
should run are shown in a box with a red border, and notes in a box with a blue border:

Code to execute will appear in red boxes.

Notes will appear in blue boxes.

1 Kaldi setup

First, lets set up a local directory where we can run experiments. In a terminal window on
DICE:

cd asr_labs

mkdir wsj

cd wsj

cd dir changes the directory to dir, and ls lists its contents. cd .. moves up one
directory, cd - moves to the previous directory,
and cd ~ moves to your home directory.

You are now in your work directory.
We’ll now set up some files we need to run experiments in Kaldi. Run the following

commands to create softlinks to your directory and to create a few empty directories. The
dot means to create the links or copies in the current directory.

1www.kaldi-asr.org

1

First, we will create softlinks of some directories

ln -s /afs/inf.ed.ac.uk/group/teaching/asr/tools/labs/steps .

ln -s /afs/inf.ed.ac.uk/group/teaching/asr/tools/labs/utils .

ln -s /afs/inf.ed.ac.uk/group/teaching/asr/tools/labs/local .

ln -s /afs/inf.ed.ac.uk/group/teaching/asr/tools/labs/path.sh .

Second, we will copy/make some directories so we can modify them

cp -r /afs/inf.ed.ac.uk/group/teaching/asr/tools/labs/conf .

mkdir data

mkdir exp

ln -s f1 f2 creates a soft link from f1 to f2, so that any changes made to one will
affect the other. When you want to copy instead, use cp: cp -r dir1 dir2 copies
the directory dir1 to dir2, the -r (recursive) flag is required for directories.

Your work dir now has a typical directory structure for Kaldi. Type the following
command to list its contents

ls

You should see the following files and folders:

conf contains configurations for certain scripts that may read them. More on this later.

data will contain any data directories, such as a train and test directory for WSJ. We
will create these below.

exp contains the actual experiments and models, as well as logs.

local this directory typically contains scripts that relate only to the corpus we’re working
on (e.g. WSJ). In this case it also may contain files we have provided for you.

path.sh contains the path to the Kaldi source directory

steps contains scripts for creating an ASR system

utils contains scripts to modify Kaldi files in certain ways, for example to subset data
directories into smaller pieces

Kaldi is composed of a set of binaries (programmes) that perform particular tasks. These
binaries can be strung together, and this is what provides Kaldi with much of its flexibility
and is what most of the scripts do. The binaries are stored some place else than the work
directory. To access them from anywhere, we set (inside the file path.sh) an environment
variable KALDI ROOT to point to the Kaldi installation and add this to the system path
(PATH). To set this variable type

source path.sh

or equivalently

2

. ./path.sh

To see whether it is set and where it points to run

echo $KALDI_ROOT

The command echo prints any string to the terminal along with any variables (e.g.
$KALDI ROOT). To omit newlines use the flag -n.

The path.sh file is called at the beginning of all Kaldi scripts, e.g. look at the first 18
lines of the script that computes MFCCs:

head -18 steps/make_mfcc.sh

head -l file and tail -l file prints the first and last l lines of file. A useful
variation is tail -n +l which prints from line l to the end.

You should see a line at the end which sets the environment variables, if path.sh exists.
It’s a good idea to run this at the beginning of any Kaldi scripts.

&& will execute the next command if the previous succeeded (a typical Kaldi conven-
tion is using the opposite, || (double pipe), in its scripts, ending lines with command

|| exit 1, which means to exit the script with status 1 (error) if the preceding
commands did not succeed).

Now that the environment variables are set, try to run a typical Kaldi binary without
any arguments, e.g.

feat-to-dim

It should provide an explanation of its purpose and usage instructions. This is common
to all Kaldi binaries and scripts.

Forgetting to run source path.sh if one of the most common mistakes. If you are
getting errors like:

bash: feat-to-dim: command not found

Try to source path.sh and rerun the previous command.

Another common mistake is running commands from other directories than
∼/asr labs/wsj, if you get an error, make sure that you are in ∼/asr labs/wsj

with the pwd command.

Other common errors can be found in Appendix 2.3.

3

Kaldi comes with recipes for various corpora. These are typically embodied in a
run.sh script in the main directory, with supporting files in local. This script will
call high level scripts in steps and utils, which in turn call binaries which perform
the actual computation.

2 WSJ

We will create a data directory for WSJ and extract features. We will write the commands
one-by-one into the shell.

If you’re new to Bash scripting or need a refresher, here’s a few resources you may find
useful. The first three expect no previous knowledge of Bash, the last is good to get to know
many useful commands.

• BASH Programming - Introduction How-To: http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.
html

• Advanced Bash-Scripting Guide: http://www.tldp.org/LDP/abs/html/index.html

• Bash Guide for Beginners: http://www.tldp.org/LDP/Bash-Beginners-Guide/html/
index.html

• UNIX for Poets: http://www.cs.upc.edu/~padro/Unixforpoets.pdf

2.1 Data preparation

In the data preparation step we will create directories in data which will store any training
and test sets, features and eventually a language model.

We create data directories for WSJ by running the following two lines. Don’t worry
about warnings of nonzero return status. This might take a minute or two.

wsj=/group/corporapublic/wsj

local/wsj_create_data.sh $wsj

The data we just created is in the data directory. Let’s see what we created with the
command above. Navigate to one of the created subdirs and look at the contents:

cd data/train

ls

The following files should be present. Have a look at each:

4

less text

less spk2utt

less wav.scp

less spk2gender

The script we ran has combined all the information from the WSJ directory we just
looked at into files that neatly contain the information in a way that Kaldi can work with
it.

The files are closely related by utterance and speaker ids, abbreviated to utt id and spk id
in Figure 1. The speaker information is used to pool statistics across utterances for speaker
adaptation and for speaker specific scoring (if you have no speaker information, is it best
to create one large ”global” speaker for all the utterances, or to consider each utterance as
from a different speaker?). There can also be recording ids, but in the absence of a segments

file, which sets out what portions of each audio file should be used for an utterance id, the
recording ids are equivalent to the utterance ids. In this case we use the entire length of
each audio file set out in wav.scp.

Figure 1: Illustration of a Kaldi data directory structure.

Change directory back to the main workdir:

cd ~/asr_labs/wsj

To check that the data directories conform to Kaldi specifications, validate them by
running the following two lines:

5

utils/validate_data_dir.sh data/train

utils/validate_data_dir.sh data/test

Uh oh. We’re missing utt2spk, but we have spk2utt. These two files contain the same
information, just with the mapping reversed. So we can easily convert one into the other.
In the utils directory there is a file called spk2utt to utt2spk.pl. This is a Perl script
which reads from stdin and writes to stdout. To pipe into the script we use <, to pipe out
and into a file (instead of stdout) we use >. Run the following commands:

utils/spk2utt_to_utt2spk.pl < data/train/spk2utt > data/train/utt2spk

utils/spk2utt_to_utt2spk.pl < data/test/spk2utt > data/test/utt2spk

Run the validation scripts again. There should only be a feats.scp file missing, which
we’ll create next.

Have a look at the file you just created. How does it relate to spk2utt?

less data/train/utt2spk

less data/train/spk2utt

To see how many utterances there are in the training directory, we can use the command
wc:

wc -l < data/train/utt2spk

• How many speakers are there in the training data?

2.2 Features

We’ll now generate the features and the corresponding feats.scp script file, that will map
utterance ids to positions in an archive, e.g. feats.ark.

For GMM-HMM systems we typically use MFCC or PLP features, and then apply cep-
stral mean and variance normalisation.

For the next step it can be handy to use a for loop, to loop over directory names.
In Bash the syntax is:

for var in item1 item2 item3; do

echo $var;

done

This will print:

item1

item2

item3

We will create MFCCs for our data. Run the following lines, which loops over the data
directories and extracts features for each.

6

for dir in train test; do

steps/make_mfcc.sh data/$dir data/$dir/log data/$dir/data

done

This will have created feats.scp with corresponding archives in a folder called data/$dir/data
and written log files to data/$dir/log. (These are actually default directories and could
have been omitted from the above command).

• You will now compute cepstral mean and variance normalisation statistics for the data.
Find the appropriate script in the steps folder - perhaps using ls steps/*cmvn*. The
run the script as above:

for dir in train test; do

steps/<insert-script-here> data/$dir

done

This will create cmvn.scp in each data directory.

• Validate the data directory again.

2.2.1 Script and archives (*.scp, *.ark)

scp files map utterance ids to positions in ark files. The latter contain the actual
data. Kaldi binaries generally read and write script and archives interchangeably,
as long as the filename is prepended with the type of file you wish to read or write,
e.g. scp:feats.scp or ark:mfcc.ark or ark:- to write to stdout. Archives will be
written in binary, unless you append the ,t modifier: ark,t:mfcc.ark.

For more see the documentation on Kaldi I/O mechanisms, see: http://kaldi-asr.
org/doc/io.html#io_sec_tables

Kaldi binaries typically read and/or write script and archive files. When this is the case,
the usage message will show rspecifier or wspecifier. Scripts and archives represent the
same data, so passing either to a program yields the same results.

Let’s try using the programme feat-to-dim to find the dimensions of the features we
just created:

feat-to-dim scp:data/train/feats.scp -

feat-to-dim ark:data/train/data/raw_mfcc_train.1.ark -

7

Are they the same?
Let’s have a look at the actual features too. The archives are by default written in

binary, but we can make a readable copy using the program copy-feats and a suitable
write specifier (see box above). We pipe it into head to avoid overflowing the terminal
window:

copy-feats scp:data/train/feats.scp ark,t:- | head

Do the features match what you got from feat-to-dim?
Read specifiers can take bash commands ending with a pipe (|) as arguments. This can

be handy if you only want to look at the features for a particular utterance.

• Try replacing the read specifier scp:data/train/feats.scp in your previous solution
with the following (what does this command do?). The single quotes are required
because the entire string is now a read specifier.

scp:'grep 011c021e data/train/feats.scp |'

grep will search for a string in a file and output that entire line by default:
grep string filename. The string could be a regex query and there are a lot
of options. See man grep for more.

• Try the same trick as above, but find how many frames that utterance has using the
program feat-to-len.

While write specifiers can write to stdout (e.g. ark:-), read specifiers can read from
stdin. What does the following command do? This syntax is crucial to piping Kaldi
programmes together.

head -10 data/train/feats.scp | tail -1 | copy-feats scp:- ark,t:- | head

steps/make mfcc.sh, which you ran above, used the programme compute-mfcc-feats

to extract features. This programme looks for conf/mfcc.conf in the conf folder for any
non-default parameters. These are passed to the corresponding binaries.

Look at that file

less conf/mfcc.conf

and compare it to the options for the program by running it without arguments:

compute-mfcc-feats

8

Configuration files in the conf folder are read by scripts from the steps folder. The
contents of a configuration file is passed to a binary inside the script.
For example, steps/make mfcc.sh will look for a file called conf/mfcc.conf. It
will then read that file and pass the arguments to the binary compute-mfcc-feats.
Hence, the arguments in conf/mfcc.conf should correspond to the arguments for
compute-mfcc-feats.

If you have time, let’s combine what we’ve learned and create filterbank features.

• Create copies of your data directories and generate filterbank and pitch features
for each (look in the steps folder for a suitable script). However, first create a
conf/fbank.conf file (using some text editor or see box below). Include an argument
to set the dimension of the filterbank features to 40. (Hint: Look at compute-fbank-feats
for arguments). You will also need to create a conf/pitch.conf file, but this can be
empty. Finally, check the feature dimension and make sure it is 43 (there are three
pitch features).

To open or create a file in nano, type

nano conf/fbank.conf

Inside nano, use the arrow keys to move around the text file. To exit, hit ctrl+X and
hit Y or N to the question of whether to save any changes or not. Other commands
are listed at the bottom of the window.

We’re done! Next time we’ll build a GMM-HMM system.

2.3 Appendix: Common errors

• Forgot to source path.sh, check current path with echo $PATH

• No space left on disk: check df -h

• No memory left: check top or htop

9

• Lost permissions reading or writing from/to AFS: run kinit && aklog. To avoid
this, run long jobs with the longjob command.

• Syntax error: check syntax of a Bash script without running it using bash -n scriptname

• Avoid spaces after \when splitting Bash commands over multiple lines

• Optional params:

• command line utilities: --param=value

• shell scripts: --param value

• Most file paths are absolute: make sure to update the paths if moving data directories

• Search the forums: http://kaldi-asr.org/forums.html

• Search the old forums: https://sourceforge.net/p/kaldi/discussion

2.4 Appendix: UNIX

• cd dir - change directory to dir, or the enclosing directory by ..

• cd - - change to previous directory

• ls -l - see directory contents

• less script.sh - view the contents of script.sh

• head -l and tail -l - show first or last l lines of a file

• grep text file - search for text in file

• wc -l file - compute number of lines in file

10

