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Recap: Encoder-Decoder Model
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“Decoder only” model

P(yalyu-1...

o Decoder: Computes distribution
over labels conditioned on
previously predicted labels and the

acoustics, P(yulYu—1,---, Y0, X)
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@ No (cross) attention mechanism:
Information from encoded sequence (Demder)
hSne .. henc is project to a fixed L
embeddlng Henc, or a sequence @
that is word-like in length.

@ Projected encoder embedding is hgne

prepended to the decoder input
@ Inference again operates using Encoder
output label clock only
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End-to-end vs factorised models

@ Traditional HMM systems are generative models, easy to
incorporate human knowledge

o Fully-differentiable E2E models allow all parameters to be
optimised towards a single objective, but assume the presence
of speech data

@ Self-supervised speech models can learn good abstract
representations of speech with a lot of audio data — but is it
sufficient for ASR?

All models try to solve the problem that speech and text sequences
are very different lengths, with unknown alignment and potentially
long-span dependencies.

ASR Lecture 18 5



“Fundamental Equation of Speech Recognition”

If X is the sequence of acoustic feature vectors (observations) and
W denotes a word sequence, the most likely word sequence W* is
given by

W* = arg max P(W | X)

Applying Bayes' Theorem
W* =argmax p(X | W)  P(W)
W ——_—— N——

Acoustic Language
model model
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Viterbi search with a bigram language model
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Training data considerations

When building an state-of-the-art ASR system, it's important to
consider what data and pre-trained models you have available, and
how well each is matched to your use case

Limited transcribed data, restricted domain
— HMM-DNN model

Lots of transcribed speech data from target domain
— Neural E2E model

Lots of untranscribed audio
— self-supervised speech representation

General-purpose application
— large language model?
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The neural decoder as a language model

A conventional LM models

N

P(W)=P(w,...,wn) =[] p(wilwa,...wi_1)
i=1

Or equivalently:

U
P(Y) = P(y,....yu) = [] pUilyo, - - - yu-1)
u=1

where Y is a sequence of tokens.

We can generate a word sequence by sampling from this
distribution.

ASR Lecture 18 9



The decoder as an ASR system

We wish to condition the output generated from the LM on the
acoustic sequence X:

P(Y|X) = P(y1,. .. yulX) = Hp(y,!yo,- YVu-1,X)

whilst still being able to train the LM on (lots of) text data. How?
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The decoder as an ASR system

We wish to condition the output generated from the LM on the
acoustic sequence X:

P(Y|X) = P(y1,. .. yulX) = Hp(y,!yo,- YVu-1,X)

whilst still being able to train the LM on (lots of) text data. How?

Solution:
@ Use a pre-trained (and fixed) acoustic encoder

@ Project the encoder output to the same length/embedding
space as text — can be used directly as input to the LM
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Decoder prepending
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Methods for projecting the acoustic embedding

o Discretized representations (eg. Zhang et al)
o CTC-like compression (eg. Wu et al)

@ Downsampling with a fixed factor
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Discretized representations

@ Use a self-supervised speech representation that produces a
sequence of discrete units (eg. HUBERT)

@ Remove adjacent duplicate indices

@ Expand the vocabulary of the LLM to incorporate the discrete
unit inventory
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Discretized representations
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CTC compression

Use outputs of a pre-trained CTC model to determine which
encoded frames to remove or merge.
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Instruction-tuned models

Instruction-tuning allows LMs to perform diverse NLP tasks in a
“zero shot” fashion:

U
P(Y|X,P) = P(y1,...yulX) = ] pUilyo; - - - yu-1. X, P)
u=1
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Instruction-tuned models

Instruction-tuning allows LMs to perform diverse NLP tasks in a
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Instruction-tuned models

Can be used to integrate speech input into other downsteam
systems — avoids error propagation that can happen with a
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Instruction-tuned models

But it can also be used to produce speech transcriptions in a
zero-shot fashion without any fine-tuning of the LLM.

Transcribe this

(
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Additional details

@ Both self-supervised and supervised speech encoders have
been successfully used

@ Important that the compressed embeddings are monotonic to
match the left-to-right nature of generative LMs

@ Typically the LM parameters are frozen during projection or
fine tuning of the encoder, but LoRA can be used to update
the LM afterwards

@ The exact training regime depends on the type of data
available

@ Many recent models are also capable of producing speech
output
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Directly correcting ASR output

Correct this
transcription

You look at drugs that competitively antagonise
the nicotinic alkaline receptor
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Correcting ASR output: examples

ASR: so this patient does have signs of glaucomatsopsy neuropathy
LLM: so this patient does have signs of glaucomatous optic neuropathy
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Correcting ASR output: examples

Uncorrected ASR Output LLM Output with List of Terms

1: You look at drugs that competitively antagonise * 1: You look at drugs that competitively

the nicotinic alkaline receptor. antagonise the nicotinic acetylcholine

2: What concentration of stickmen do you want receptor.

to add? .

3: So a reminder on the process of a star calling * 2: What concentration of acetylcholine do you
release. want to add

terms: ["acetylcholinesterase”, "acetylcholine", ¢ 3: So a reminder on the process of

"acetate", "acetic", "acetyl", "energy", "nicotinic", acetylcholine release.

"neostigmine", "presynaptic" .

LLM Output without List of Terms

¢ 2: What concentration of stilbenes do you
want to add?

ASR Lecture 18 22



Correcting ASR output: examples

HUMAN: here we find Seung et al. and they looked at 144 eyes with early glaucoma
ASR: Here we find Sung Etel and they
LLM: here we find Sung et al. and they looked at 144 eyes with early glaucoma
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Correcting ASR output: examples

REF: so * % cardiff cards will cost in the region of over 600 pounds whereas
LLM history: so a set of cardiff cards will cost in the region of over 600 pounds whereas

LLM sentences: so a card of cards will cost in the region of over 600 pounds whereas
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@ LLMs can be a powerful tool modern ASR

@ Seamless integration of speech inputs many downstream tasks
and avoid error propagation

@ Even simple approaches can work very well when the LLM is
very powerful

@ But think carefully about what data is available when deciding
on an approach to take

ASR Lecture 18 px}



Backround Reading
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e Wu et al. (2023), “On decoder-only architecture for
speech-to-text and large language model integration”, Proc.
ASRU https:
//ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10389705

ASR Lecture 18 24


https://aclanthology.org/2023.findings-emnlp.1055.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10389705
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10389705

