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Recap: CTC

PyX) - Plyu|X)

View CTC as having three components:

e Encoder: Deep (bidirectional) cTe

LSTM recurrent network which
maps acoustic features
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@ Softmax: Computes the label
probabilities P(c1|X), ..., P(cT|X)

@ CTC: Computes the subword
sequence P(y1|X),..., P(ym|X)
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Recap: RNN-T

o Encoder: Acoustic model network
mapping acoustic features

X =xy,...,xT to hidden vectors
enc _ penc enc
A= = AT L AT

Py X) Plyy|X)

- - RNN-T
@ Prediction network: Recurrent

network which takes the previous PleX) - PleriX)
output subword label y,_1 as input @@
and predicts the next subword label
pu — acts as a language model
(over subwords) (_ Jointnework )

o Joint network: Computes a joint P ngne
hidden vector Z = z;,...,zT by a
applying a shallow feed-forward net <
to h*"C¢ and p, y_T T T

@ Followed by softmax and CTC
components as before
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Attention-based Encoder-Decoder Model

@ So far, outputs have always been time synchronous
e “input clock” and “output clock” have a clear relationship
defined by the model
@ monotonic relationship between input sequence and output
symbols
@ AED model removes this relationship, replacing it with
attention over the inputs determined by the (hidden) state of
the decoder.

@ All components use neural networks so are end-to-end
differentiable.
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Attention-based Encoder-Decoder Model

@ Encoder: Acoustic model using a Plyalyecsoo w0 X)
recurrent network to map acoustic
features X = xq,...,x7 to hidden
vectors h€NC = pgNC . ASNC. MLP

@ Decoder: Computes distribution dec e

over labels conditioned on
previously predicted labels and the

acoustics, P(yulyu—1,---,y0,X) . I
o Attention: Constructs a context "

vector for the decoder network ndec
based on attention weights
computed over all frames in the

encoder output Encoder

Decoder

Attention

o Google's “Listen, Attend, and
Spell” model: Chan et al (2016) B
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The Decoder

@ The decoder directly generates the output subword
sequence Y

@ At each decoding step u, the decoder RNN uses the previous

output y,_1, the previous decoder RNN hidden state hgfg,

and the previous context vector c¢,_1 to generate the current
decoder hidden state hf,lec

thJieC = RNN(htCJiEClzvyufla Cufl)

@ The context vector is computed by the attention mechanism
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The Attention Mechanism

The attention mechanism uses the current decoder RNN
hidden state hgec, and the sequence of encoder hidden states

h€N€ to compute an alignment matrix a;:
aue = Attention(h98€, RENC)

The alignment vector is used as weights in a weighted sum of
the encoder hidden states to compute the context vector c,:

T
2 enc

c, = autht
t=1

The decoder uses the context vector ¢, and the current
decoder hidden state hgec to estimate the subword
distribution:

gu(k) = exp(MLP(h9eC, ¢,))

=) = <
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Alignment Vector

o Attention models the alignment between the current output
v, and the input sequence X — it matches the “input clock”
with the “output clock”

@ Various ways to compute the attention - content-based
attention commonly used. Single hidden layer followed by a
softmax

eue = v tanh(WHIEC 4 VAN 4 p)

exp(eut)

>k exp(euk)

Qut =

ASR Lecture 16 8



The AED “trellis”
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The AED “trellis”

X1 X2 X3 X4 X5 X6
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The AED “trellis”
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The AED “trellis”
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Decoder determines attention over input encodings

X1 X2 X3 X4 X5 X6
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Compute context vector
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Generate output unit
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Decoder state update
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Computing attention

o Attention models the alignment between the current output
v, and the input sequence X — it matches the “input clock”
with the “output clock”

@ Various ways to compute the attention - content-based
attention commonly used. Single hidden layer followed by a
softmax

eue = v tanh(WHIEC 4 VAN 4 p)

exp(eut)

>k exp(euk)

Qut =
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Attention example
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Pyramid Encoder

@ A significant problem with a naive end-to-end model is the
length of the input sequences... A direct BLSTM encoder can
be difficult and slow to train — hard to extract the relevant
information from many time steps

@ Use a pyramid architecture — each successive layer reduces the
resolution by a factor of 2.

o Typical deep BLSTM hidden state (layer j, time t):

W= RNN(H S H_y)
e Pyramid model concatenates consecutive hidden states:
W = pyrRNN([h5, 1y 050 )

e 3 layers in a pyramid architecture reduces the time resolution
(shortens the sequence) by a factor of 8

e The attention mechanism thus has an easier job, weighting
over 8x fewer encoder hidden states
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@ Model trained to maximise the log probability of correct
sequences

Z IOg P(YU|X7Y<U)

where y., is the sequence yi,...,Yu—1
@ An interesting subtlety: what value should be used for y.,?

e The previous predictions? This is consistent between training
and test, but adds noise at training time

o The ground truth labels (teacher forcing)? This speeds up
learning, especially early on, but there is a mismatch between
training and testing

e Scheduled sampling? Sample a label from the estimated
distribution. This reduces the noise in training, but doesn’t
create a big gap between training and test
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Decoding and Rescoring

@ Decode without a separate pronunciation model or an external
language model!

e Simply decode the grapheme sequence! (It is possible to
rescore with a language model if desired)

@ Decoding uses a beam search in which n-best hypotheses are
retained at each decoding step
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Results (2017)

Google Voice Search data, 12,500h training data, 15M
hand-transcribed utterances

Clean Nois .
Model dict | s dict ] yvs flumeric
Baseline Uni. CDP 6.4 9.9 8.7 14.6 11.4
Baseline BiDi. CDP 54 8.6 6.9 - 11.4
End-to-end systems
CTC-grapheme? 394 | 534 - - -

RNN Transducer 6.6 128 | 85 | 22.0 9.9
RNN Trans. with att. 6.5 125 | 84 | 215 9.7
Att. 1-layer dec. 6.6 11.7 | 87 | 20.6 9.0
Att. 2-layer dec. 6.3 11.2 | 81 | 19.7 8.7

Prabhavalkar et al (2017)
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Other Refinements

@ Wordpiece models — rather than using single graphemes as
labels use multi-grapheme units (up to a word in length) -
similar to bye pair encoding in machine translation

@ Multiheaded attention — use multiple attention distributions

@ Minimum WER training — modify the loss function to
interpolate a word error rate term

@ Label smoothing — smooth the ground truth distribution by
interpolating with a uniform distribution

@ LM rescoring — use an external language model (5-gram)
trained on large amount of text

Reduced WER on Voice Search from 9.2% to 5.6% — their hybrid
HMM-LSTM system has WER of 6.7% on this task

Chiu et al (2018)
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Hybrid CTC/Attention

@ Attention is very flexible — does not constrain relationship
between acoustics and labels to be monotonic

@ This can be a problem, especially when huge amounts of
training data not available
@ Possible solutions:
e Windowed attention, in which the attention is restricted a set
of encoder hidden states
o Hybrid CTC/Attention model - use CTC and attention jointly
during training and recognition — regularises the system to
favour monotonic alignments
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Hybrid CTC/Attention

CTC

EI EI Attention

Decoder

Shared
Encoder

Watanabe et al (2017)
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Whisper: an open AED model

English transcription

Any-to-English speech translation
@ “El répido zorro marrén salta sobre -

7 The quick brown fox jumps over -

Non-English transcription

Multitask training data (680k hours)

@ “Ask not what your country can do for

7 Ask not what your country can do for -

- Transformer
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Whisper: an open AED model

Sequence-to-sequence learning
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Whisper: an open AED model

Multitask training format  Language USR Time-aligned transcription
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@ End-to-end models for speech recognition: CTC, RNN
Transducer, Attention Encoder-Decoder

@ RNN Transducer and Attention-based model integrate
acoustic model, pronunciation model, and language model
into a single neural network

@ With large amounts of hand-transcribed training data,

attention-based model can be more accurate than
context-dependent NN/HMM

@ Attention based model operates over an utterance at a time
(since attention is over the complete encoded utterance)

@ Remains an active research area! Eg. recent use of
self-attention (Transformer) in place of recurrent architectures
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