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Recap — CTC

@ Adds a blank (€) symbol to the output labels

@ A deep LSTM (for example) maps input sequence X (length
T) to a label sequence C (length T)

@ Use CTC compression rule (merge adjacent repeated symbols,
then remove blanks) to produce subword sequence Y (length
M<T)

@ CTC loss function computes the probability P(Y|X) by
summing over all possible valid alignments P(C|X)
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CTC Model

PyX) - Plyu|X)

View CTC as having three components:

e Encoder: Deep (bidirectional) cTe

LSTM recurrent network which
maps acoustic features
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@ Softmax: Computes the label
probabilities P(c1|X), ..., P(cT|X)

@ CTC: Computes the subword
sequence P(y1|X),..., P(ym|X)
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Limitations of CTC

e CTC — pros
e Can train end-to-end without requiring framewise alignments
e Sums over all possible alignments (using forward-backward)
e Preserves monotonic relationship between acoustic frames and
output labels
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e CTC - pros

e Can train end-to-end without requiring framewise alignments

e Sums over all possible alignments (using forward-backward)

e Preserves monotonic relationship between acoustic frames and
output labels

@ CTC - cons

e Assumes output predictions at different times are conditionally
independent, given X.

e In practice, this means that the model learns only weak
language and pronunciation models

e Incorporation of external language models is typically ad-hoc

e End-to-end training of CTC models updates the “acoustic
model” parameters using a sequence level criterion, but does
not update the pronunciations or language models
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RNN Transducer Model

e Encoder: Acoustic model network Pl = PlowlX)
mapping acoustic features
X = x1,...,x7 to hidden vectors
penc _ henc ... h&nc, RNI:I-T

@ Prediction network: Recurrent W
network which takes the previous
output subword label y, 1 as input Softmax )
and predicts the next subword label
pu — acts as a language model

(over subwords) (" Jointnetwork )

e Joint network: Computes a joint
hidden vector g; , by a applying a

shallow feed-forward net to h€"C

and Pu Encoder
@ Followed by softmax and a

CTC-like compression component
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RNN-T output compression

@ As in CTC, we extend the output label space by adding a
blank label, €

@ The location of the blank symbols determines the alignment
between X and Y.

@ Each blank symbol signals a shift forward by one time step

@ Blank symbols can appear in any position (there is always a
blank symbol in the final position). The total number of blank
symbols must be equal to the number of frames.

@ Suppose we have (xi,...,xs) and output (y1, y2,y3). Valid
alignments are:

(€,€6,€,€,€,y1,¥2,¥3,€)
(y1,€, €, € ¥2,€,€, 3, €)
(6 Y1,€,€,€6,€6 2, Y3, € )
(€,€,¥1,€ ¥2,€,€,¥3,€)
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RNN-T prediction

e If C is the expanded output sequence, containing T blank
symbols, then

P(YIX)= > P(CIX)
CEA(Y)

where A(Y) is the set of sequences C that can be mapped to
Y using the RNN-T compression rule

@ Probability of label ¢ depends on the position in both the
input sequence, t, and output sequence u.

gu(k) = exp(h"(k) + pu(k))

Ple=He) = s 0
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RNN-T: forward recursion

Consider a label sequence

Y = (}/17}/27-'-7)/U)

The forward probability is:

ay(t) = Py, - - .yu|h?nc, e hfnc)
Define:

Y(ta u) = P(Yqul‘ht,pu)
(t, u) = P(e|he, pu)
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RNN-T: forward recursion
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X1 X2 X3 X4 X5 X6
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RNN-T: Forward recursion

o Initialisation:

a,(0)=1 u=1

=0 otherwise

@ Recursion:

ay(t) =au(t —1)a(t — 1, u)
+ay—1(t)y(t,u—1)

o Termination:

P(Y|X) = au(T)a(T, U)
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RNN-T: Backward recursion

Define the backward probablity

Bu(t) = P(yu, - - ,yU|h$nC, R heTnc)

o Initialisation:
Bu(T)=2(T,U)

@ Recursion:

Bu(t) =Lu(t + 1)a(t, u)
+ Bu-i—l(t)y(ta U)
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RNN-T training

@ The probability that y, is emitted during transcription step t
is given by the product

oy (t)Bu(t)
@ RNN-T loss can be computed by
Lrnn-1 = — log P(Y[X)
which can be expressed as

Lennv-T=—log > au(t)Bu(t)

(t,u):t+u=n

for any nin the range 1 < n < U+ T (think of summing over
the nodes on any top-left to bottom-right diagonal)
@ Can perform backpropagation on this expression.
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Comments on the RNN-T

@ RNN transducer can operate left-to-right is a
frame-synchronous manner (if the encoder is a unidirectional
LSTM)

@ Acoustic model (encoder) and language model (prediction
network) parts are modelled independently and combined in
the joint network. However everything is optimised to a
common sequence-level objective (using the CTC loss
function).

o With sufficient training data, additional language and
pronunciation models are not necessary

@ Google's first “all-neural” on-device speech recognition used
unidirectional RNN transducers
https://ai.googleblog.com/2019/03/

an-all-neural-on-device-speech.html
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o Alex Graves (2012), “Sequence Transduction with Recurrent
Neural Networks”, International Conference of Machine
Learning (ICML) 2012 Workshop on Representation Learning
https://arxiv.org/abs/1211.3711
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