Neural Networks for Acoustic Modelling 2: DNN architectures

Peter Bell

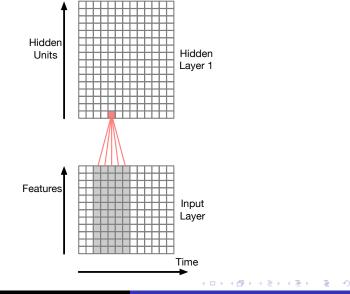
Automatic Speech Recognition – ASR Lecture 11 24 February 2025

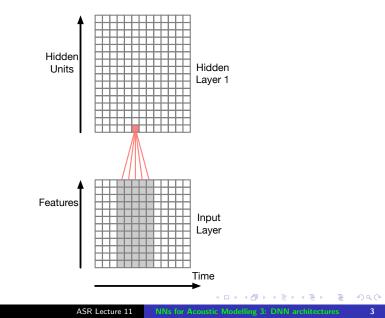
A 3 5 A 3 5

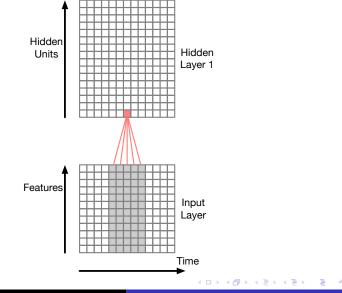
Modelling acoustic context

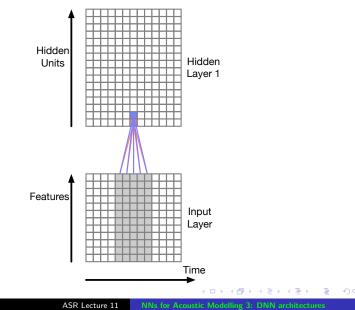
- DNNs allow the network to model acoustic context by including neighbouring frame in the input layer the output is thus estimating the phone or state probability using that contextual information
- Richer NN models of acoustic context:
 - Time-delay neural networks (TDNNs)
 - each layer processes a context window from the previous layer
 - higher hidden layers have a wider receptive field into the input
 - Recurrent neural networks (RNNs)
 - hidden units at time t take input from their value at time t-1
 - these recurrent connections allow the network to learn state
 - Both approaches try to learn invariances in time, and form representations based on compressing the history of observations
- We'll also briefly mention CNNs and Transformers

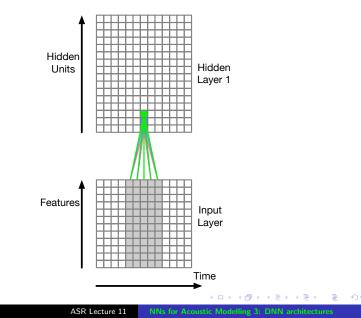
・ 同 ト ・ ヨ ト ・ ヨ ト

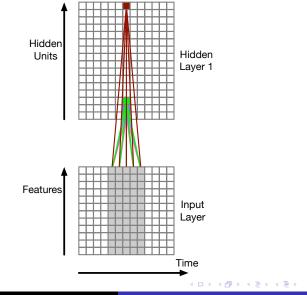


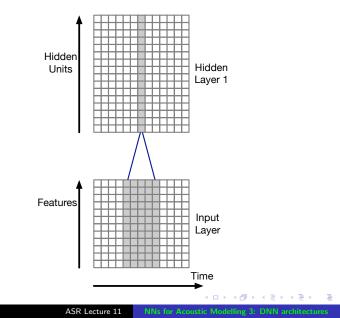


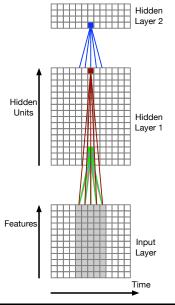




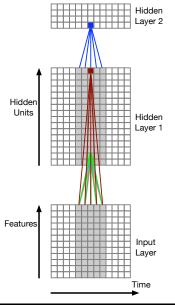




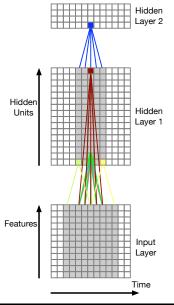




- Higher hidden layers take input from a time window over the previous hidden layer
- Lower hidden layers learn from narrower contexts, higher hidden layers from wider acoustic contexts
- Receptive field increases for higher hidden layers

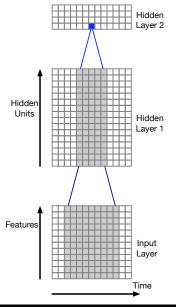


- Higher hidden layers take input from a time window over the previous hidden layer
- Lower hidden layers learn from narrower contexts, higher hidden layers from wider acoustic contexts
- Receptive field increases for higher hidden layers



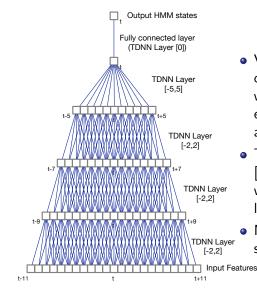
- Higher hidden layers take input from a time window over the previous hidden layer
- Lower hidden layers learn from narrower contexts, higher hidden layers from wider acoustic contexts
- Receptive field increases for higher hidden layers

(E) < (E)</p>



- Higher hidden layers take input from a time window over the previous hidden layer
- Lower hidden layers learn from narrower contexts, higher hidden layers from wider acoustic contexts
- Receptive field increases for higher hidden layers

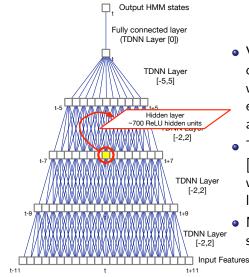
Example TDNN Architecture



- View a TDNN as a 1D convolutional network with the transforms for each hidden unit tied across time
- TDNN layer with context [-2,2] has 5x as many weights as a regular DNN layer
- More computation, more storage required!

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

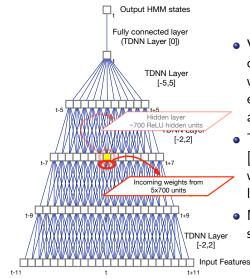
Example TDNN Architecture



- View a TDNN as a 1D convolutional network with the transforms for
 each hidden unit tied across time
- TDNN layer with context [-2,2] has 5x as many weights as a regular DNN layer
- More computation, more storage required!

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

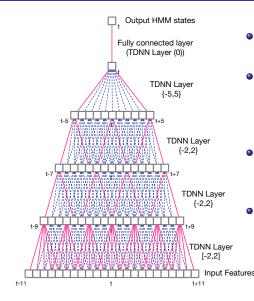
Example TDNN Architecture



- View a TDNN as a 1D convolutional network with the transforms for each hidden unit tied across time
- TDNN layer with context [-2,2] has 5x as many
 weights as a regular DNN layer
- More computation, more storage required!

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

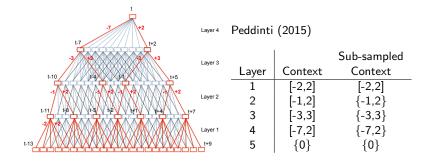
Sub-sampled TDNN



- Sub sample window of hidden unit activations
- Large overlaps between input contexts at adjacent time steps – likely to be correlated
- Allow gaps between frames in a window (cf. dilated convolutions)
- Sub-sampling saves computation and reduces number of model size (number of weights)

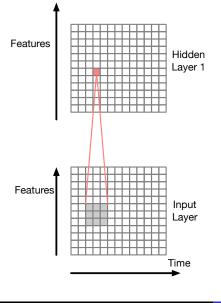
・ 同 ト ・ 三 ト ・ 三 ト

Example sub-sampled TDNN



- Increase the context for higher layers of the network
- Subsampled so that difference between sampled hidden units is multiple of 3 to enable "clean" sub-sampling
- Asymmetric contexts
- MFCC features in this case

Convolutional networks

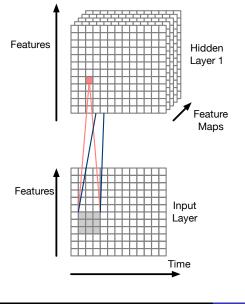


* 臣

▶ ∢ ≣ ▶

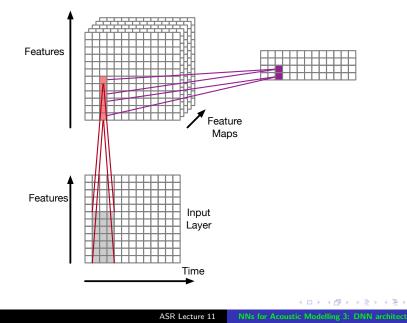
E

Convolutional networks



イロト イヨト イヨト イヨト

Convolutional networks



8

æ

Example CNN architectures

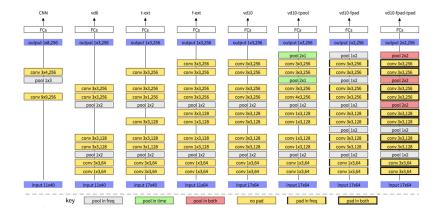


Figure from Qian & Woodland (2016)

イロト イヨト イヨト イヨト

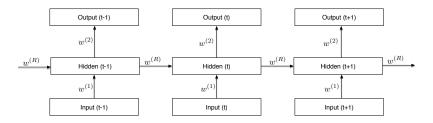
æ

Recurrent Networks

回 とう キャン・キャン

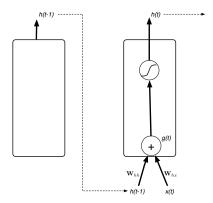
э

Recurrent network



- View an RNN for a sequence of *T* inputs as a *T*-layer network with shared weights
- Train by doing backpropagation through this unfolded network
- Recurrent hidden units are *state units*: can keep information through time
 - State units as memory remember things for (potentially) an infinite time
 - State units as information compression compress the history (sequence observed up until now) into a state representation

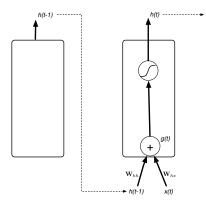
Simple recurrent network unit



$$oldsymbol{g}(t) = oldsymbol{W}_{hx}oldsymbol{x}(t) + oldsymbol{W}_{hh}oldsymbol{h}(t-1) + oldsymbol{b}_h$$

 $oldsymbol{h}(t) = anh(oldsymbol{g}(t))$

回 とう キャン・キャン

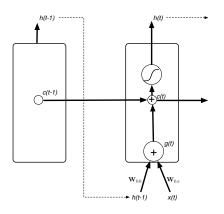


・ロト ・御 ト ・ ヨト ・ ヨト … ヨ

LSTM – Internal recurrent state

Internal recurrent state

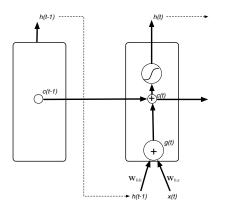
 ("cell") c(t) combines
 previous state c(t - 1)
 and LSTM input g(t)



э

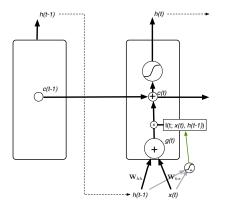
< ∃ >

LSTM – Internal recurrent state



- Internal recurrent state ("cell") c(t) combines previous state c(t - 1) and LSTM input g(t)
- Gates weights dependent on the current input and the previous state

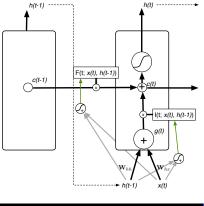
LSTM – Input Gate



- Internal recurrent state

 ("cell") c(t) combines
 previous state c(t 1)
 and LSTM input g(t)
- Gates weights dependent on the current input and the previous state
- Input gate: controls how much input to the unit g(t) is written to the internal state c(t)

LSTM – Input and Forget Gate

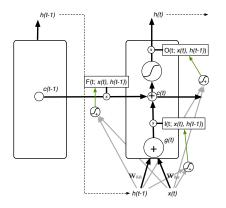


- Internal recurrent state

 ("cell") c(t) combines
 previous state c(t 1)
 and LSTM input g(t)
- Gates weights dependent on the current input and the previous state
- Input gate: controls how much input to the unit g(t) is written to the internal state c(t)
- Forget gate: controls how much of the previous internal state c(t-1) is written to the internal state c(t)

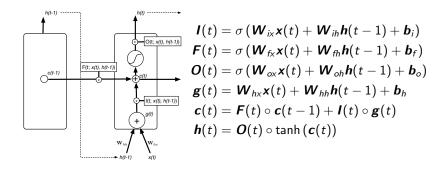
Input and forget gates

LSTM – Input, Forget and Output Gates



• Output gate: controls how much of each unit's activation is output by the hidden state – it allows the LSTM cell to keep information that is not relevant at the current time, but may be relevant later

LSTM

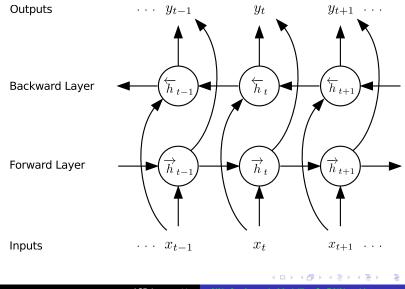


Aovids the vanishing gradient problem of conventional RNNs

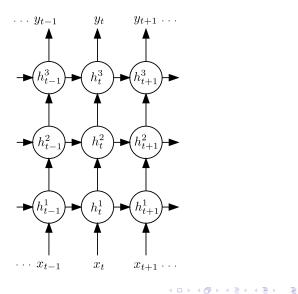
C Olah (2015), Understanding LSTMs, http: //colah.github.io/posts/2015-08-Understanding-LSTMs/

高 ト イヨ ト イヨト

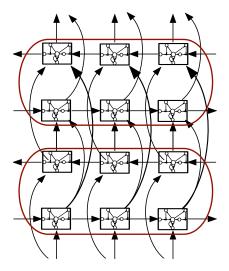
Bidirectional RNN



Deep RNN



Deep Bidirectional LSTM



イロト イヨト イヨト イヨト

18

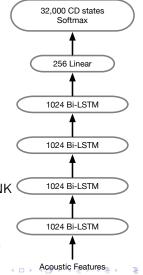
æ

Example: Deep Bidirectional LSTM Acoustic Model (Switchboard)

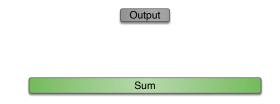
- LSTM has 4-6 bidirectional layers with 1024 cells/layer (512 each direction)
- 256 unit linear bottleneck layer
- 32k context-dependent state outputs
- Input features
 - 40-dimension linearly transformed MFCCs (plus ivector)
 - 64-dimension log mel filter bank features

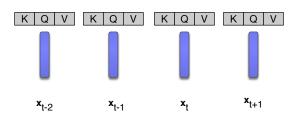
(plus first and second derivatives)

- concatenation of of MFCC and FBANK features
- Training: 14 passes frame-level cross-entropy training, 1 pass sequence training (2 weeks on a K80 GPU)



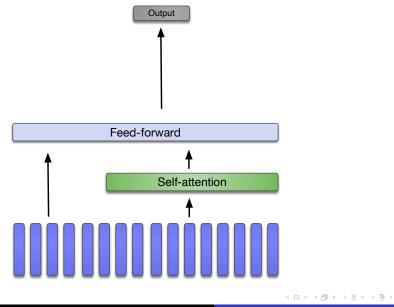
- Transformers have a self-attention mechanism
- Now commonly used in end-to-end ASR systems (see later lectures)
- Can be seen as a generalisation of the RNN, better able to attend to more distant input features
- Can be problematic on the relatively long input sequences used in ASR
- Commonly a *positional* encoder is used to compensate for the lack of time information

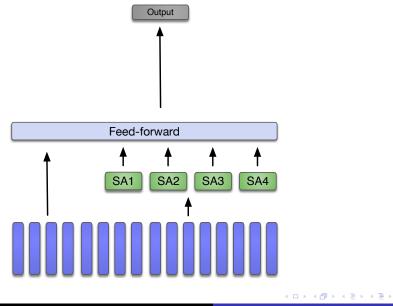




ヘロア 人間 アメヨア 人間 アー

æ







▲□ ▶ ▲ □ ▶ ▲ □ ▶

- Scaling DNNs for large vocabulary speech recognition
- LSTM recurrent networks and TDNNs offer different ways to model temporal context

• • = • • = •

Reading

• A Maas et al (2017). "Building DNN acoustic models for large vocabulary speech recognition", *Computer Speech and Language*, **41**:195–213.

https://arxiv.org/abs/1406.7806

• V Peddinti et al (2015). "A time delay neural network architecture for efficient modeling of long temporal contexts", *Interspeech*.

https://www.isca-speech.org/archive/interspeech_ 2015/i15_3214.html

Background Reading:

- G Hinton et al (Nov 2012). "Deep neural networks for acoustic modeling in speech recognition", *IEEE Signal Processing Magazine*, **29**(6), 82–97. http://ieeexplore.ieee.org/document/6296526
- Hervé Bourlard (1992). "CDNN: A context-dependent neural network for speech recognition", *Proc. ICASSP*