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Local phonetic scores and sequence modelling
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e Compute state observation scores (acoustic-frame,
phone-model) — this does the detailed matching at the
frame-level

@ Chain observation scores together in a sequence — HMM
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HMM state scores

Output a score for each phone state

Phonetic state
scores
(at time t)
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Acoustic frame
(at time t)
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Extracting features using a neural network
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@ Our network that predicts phonetic scores is a classifier — at
training time each frame of data has a correct label (target
output of 1), other labels have a target output of 0

@ We can design an output layer which forces the output values
to act like probabilities

e Each output will be between 0 and 1
e The J outputs will sum to 1

@ A way to do this is using the Softmax activation function:

_exp(f)
Yi= &7
Zk:l exp(fk)
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Cross-entropy error function

@ Since we are interpreting the network outputs as probabilities,
we can write an error function for the network which aims to
maximise the log probability of the correct label.

o If r{ is the 1/0 target of the the jth label for the tth frame,
and y{ is the network output, then the cross-entropy (CE)
error function is:

J
Et:—Zr{Iny{
j=1

@ Note that if the targets are 1/0 then the only the term
corresponding to the correct label is non-zero in this
summation.
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Extracting features using a neural network
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Incorporate acoustic context
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Incorporate acoustic context
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Use a sliding window over time
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Use a sliding window over time
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Neural networks for large vocabulary recognition

So far the networks are trained to classify each frame of
observations

@ In full speech recognition recognition, we need to obtain the
best word sequence

e Hybrid NN/HMM systems: in an HMM, replace the GMMs
used to estimate output pdfs with the outputs of neural
networks

@ Train a neural network to associate a HMM-state label with a
frame of acoustic data (+ context)

e Can interpret the output of the network as P(HMM-state |
acoustic-frame)

@ Use NN to obtain output probabilities in Viterbi algorithm to
find most probable sequence of phones
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Neural networks and posterior probabilities

Posterior probability estimation

@ Consider a neural network trained as a classifier — each output
corresponds to a class.

@ When applying a trained network to test data, it can be
shown that the value of output corresponding to class j given
an input x¢, is an estimate of the posterior probability
P(q: = j|xt). (This is because we have softmax outputs and
use a cross-entropy loss function)

e Using Bayes Rule we can relate the posterior P(q: = j|x¢) to
the likelihood p(x:|q: = j) used as an output probability in an
HMM:

P(qelxt) = ol TJ(QtI;(qt =J)
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Scaled likelihoods

@ If we would like to use NN outputs as output probabilities in
an HMM, then we would like probabilities (or densities) of the
form p(x|q) — likelihoods.

We can write scaled likelihoods as:

P(q: = j|xt) _ p(xt|qr = j)
P(q: = J) p(xt)
@ Scaled likelihoods can be obtained by “dividing by the priors”

— divide each network output P(q; = j|x¢) by P(q: = j), the
relative frequency of class j in the training data

o Using p(x¢|q: = j)/p(x¢) rather than p(x¢|q: = j) is OK since
p(xt) does not depend on the class j

@ Computing the scaled likelihoods can be interpreted as
factoring out the prior estimates for each phone based on the
acoustic training data. The HMM can then integrate better
prior estimates based on the language model and lexicon
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Hybrid NN/HMM
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Modelling phonetic context (1)

@ NNs can naturally model acoustic context, but how can we
model phonetic context?

e Early solution (Bourlard et al, 1992) — separate the modelling
of the primary class, y, and its context, ¢, with two neural
networks:

p(y, clx) = p(cly, x)p(y|x)
p(y, clx) = p(ylc, x)p(c|x)

During decoding, we need separate forward passes for each
context
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Using context as input for p(y|c, x)

(t J--(eh ][ n ] Outputsize N

7 T v
] !
/ 1 I
. ' 1 \ \
n | .

Showing just one HMM state per phone for simplicity
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Context-dependent decoding
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Context-dependent decoding




Context-dependent decoding
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Context-dependent decoding




Modelling phonetic context (2)

Tandem scheme:

@ Basic idea: use the output probabilities from the NN as input
features to standard CD-HMM-GMM system
@ Combines the benefits of both:
e NNs good at modelling wide acoustic contexts, correlated
input features
e HMM-GMMs good for speaker adaptation, modelling phonetic
context, sequence-training

NN output probabilities are Gaussianised by taking logs and
decorrelating with PCA

Early variants used purely NN features; later variants
augmented the feature vector with standard acoustic features

Can also use “bottleneck features” (narrow, intermediate NN
layers)

ASR Lecture 10 18



SEENREENe -

DD%DDDDDDD

/, / 1 1 \ \\ \\
ASR Lecture 10




Tandem scheme




Tandem scheme




Monophone HMM /NN hybrid system (1993)

Error (%)
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Renals, Morgan, Cohen & Franco, ICASSP 1992
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Monophone HMM /NN hybrid system (1998)
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@ Broadcast news transcription (1998) — 20.8% WER
@ (best GMM-based system, 13.5%)

@ Cook et al, DARPA, 1999
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HMM /NN vs HMM/GMM

o Advantages of NN:
e Can easily model correlated features

o Correlated feature vector components (eg spectral features)
o Input context — multiple frames of data at input

e More flexible than GMMs — not made of (nearly) local
components); GMMs inefficient for non-linear class boundaries
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HMM /NN vs HMM/GMM

@ Advantages of NN:
e Can easily model correlated features
o Correlated feature vector components (eg spectral features)
o Input context — multiple frames of data at input
e More flexible than GMMs — not made of (nearly) local
components); GMMs inefficient for non-linear class boundaries
@ Disadvantages of NNs in the 1990s:
o Context-independent (monophone) models, weak speaker
adaptation algorithms
o NN systems less complex than GMMs (fewer parameters):
RNN — < 100k parameters, MLP — ~ 1M parameters
e Computationally expensive - more difficult to parallelise
training than GMM systems
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NEW FEATURES IN THE CU-HTK SYS

State of the art in the year 2000
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Features of the Cambridge system

CU-HTK 2000
Base model HMM-GMM
Acoustic context A, AA features, HLDA projection
Phonetic context Tied state triphones & quinphones

Speaker adaptation | Gender-dependent models, VTLN, MLLR
Training criterion ML + MMI sequence training

System architecture | 6-pass system

Other features Multi-system combination

Hub 2000 WER 19.3%
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Features of the Cambridge system

CU-HTK 2000
Base model HMM-GMM
Acoustic context A, AA features, HLDA projection
Phonetic context Tied state triphones & quinphones

Speaker adaptation | Gender-dependent models, VTLN, MLLR
Training criterion ML + MMI sequence training

System architecture | 6-pass system

Other features Multi-system combination

Hub 2000 WER 19.3%

No neural networks!
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Ten years later

Conversational Speech Transcription
| Using Context-Dependent Deep Neural Networks

| Frank Seide', Gang Li," and Dong Yu®
| IMicrosoft Research Asia, Beijing, PR.C.
| 2Microsoft Research, Redmond, USA

| {£seide, ganl, dongyu}@microsoft . com

|
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| daa using hundreds of tied states. This paper takes CD-DNN-
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Features of the Microsoft NN system

Microsoft 2011
Base model HMM-DNN
Acoustic context 11 frames directly modelled
Phonetic context Tied state triphones
Speaker adaptation | None
Training criteria Frame-level cross-entropy
System architecture | Single pass
Other features Deep network architecture
Hub 2000 WER 16.1%
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Acoustic features for NN acoustic models

e GMMs: filter bank features (spectral domain) not used as they
are strongly correlated with each other — would either require

o full covariance matrix Gaussians
e many diagonal covariance Gaussians
@ DNNs do not require the components of the feature vector to
be uncorrelated

o Can directly use multiple frames of input context (this has
been done in NN/HMM systems since 1990, and is crucial to
make them work well)

e Can potentially use feature vectors with correlated components
(e.g. filter banks)

@ Mel-scaled filter bank features (FBANK) found to result in
greater accuracy than standard MFCCs, though higher
resolution MFCCs are now used
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Recap: context-dependent units
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Recap: tied context-dependent units




Modelling phonetic context (3)

@ In the 1990s, this was considered hard (see earlier slides)

@ But in 2011, a simple solution emerged: use state-tying from
a GMM system
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Modelling phonetic context (3)

@ In the 1990s, this was considered hard (see earlier slides)

@ But in 2011, a simple solution emerged: use state-tying from

a GMM system

Context-Dependent Pre-Trained Deep Neural
Networks for Large-Vocabulary Speech Recognition

George E. Dahl, Dong Yu, Senior Member, IEEE, Li Deng, Fellow, IEEE, and Alex Acero, Fellow, IEEE

Abstract—We propose a novel context-dependent (CD) model for
large-vocabulary speech recognition (LVSR) that leverages recent
advances in using deep belief ‘networks for phone recognition. We
describe a pre-trained deep neural network hidden Markov model
(DNN-HMM) hybrid architecture that trains the DNN to produce
a distribution over senones (tied triphone states) as its output. The
deep belief network pre-training algorithm is a robust and often
helpful way to initialize deep neural networks generatively that
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fields (CRFs) [18]-[20], hidden CRFs [21], [22], and segmental
CRFs [231). Despite these advances, the elusive goal of human
level accuracy in real-world conditions requires continued,
vibrant research.

Recently, a major advance has been made in training densely
connected, directed belief nets with many hidden layers. The
resulting deep belief nets learn & hierarchy of nonlinear feature




Context-dependent hybrid HMM /DNN

First train a context-dependent HMM/GMM system on the
same data, using a phonetic decision tree to determine the
HMM tied states

Perform Viterbi alignment using the trained HMM/GMM and
the training data

Train a neural network to map the input speech features to a
label representing a context-dependent tied HMM state

o So the size of the label set is thousands (number of
context-dependent tied states) rather than tens (number of
context-independent phones) or tens of thousands (number of
full set of context-dependent phones)

e Each frame is labelled with the Viterbi aligned tied state

Train the neural network using gradient descent as usual

Use the context-dependent scaled likelihoods obtained from
the neural network when decoding
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CD-HMM-DNN
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Obtain labels with the Viterbi algorithm
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@ DNN/HMM systems (hybrid systems) gave a significant
improvement over GMM/HMM systems

e Compared with 1990s NN/HMM systems, DNN/HMM
systems

e model context-dependent tied states with a much wider output
layer

o are deeper — more hidden layers

e can use correlated features (e.g. FBANK) or higher resolution
MFCCs

@ Background reading:

o N Morgan and H Bourlard (May 1995). “Continuous speech
recognition: Introduction to the hybrid HMM /connectionist
approach”, IEEE Signal Processing Mag., 12(3), 24-42.
http://ieeexplore.ieee.org/document/382443

o A Mohamed et al (2012). “Understanding how deep belief
networks perform acoustic modelling”, Proc ICASSP-2012.
http://www.cs.toronto.edu/~asamir/papers/icasspl2_
dbn.pdf
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