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Overview

Large-vocabulary reocognition

The Viterbi algorithm for isolated and connected words

Decoding with bigram and trigram language models

Methods for efficient search: pruning, tree-structured lexicons,
look-ahead
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HMM Speech Recognition
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The Search Problem in ASR

Find the most probable word sequence Ŵ = w1,w2, . . . ,wM

given the acoustic observations X = x1, x2, . . . , xT :

Ŵ = arg max
W

P(W |X)

= arg max
W

p(X | W )︸ ︷︷ ︸
acoustic model

P(W )︸ ︷︷ ︸
language model

Use pronuniciation knowledge to construct HMMs for all
possible words

Finding the most probable state sequence allows us to recover
the most probable word sequence

Viterbi decoding is an efficient way of finding the most
probable state sequence, but even this is infeasible as the
vocabulary gets very large or when a stronger language model
is used
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Recap: the word HMM

r1 r2 r3 ai_1 ai_2 ai_3r_1 r_2 r_3 t_1 t_2 t_3

/r/ /ai/ /t/
“right”

HMM naturally generates an alignment between hidden states and
observation sequence

ASR Lecture 8 Large vocabulary ASR 5



Viterbi algorithm for state alignment
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Viterbi algorithm finds the best path through the trellis – giving
the highest p(X ,Q).
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Simplified version with one state per phone
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Isolated word recognition

r1 r2 r3r ai t

“right”

r1 r2 r3t eh n

“ten”

r1 r2 r3p ih n

“pin”

E0
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Viterbi algorithm: isolated word recognition
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Connected word recognition

Even worse when recognising connected words...

The number of words in the utterance is not known

Word boundaries are not known: any of the V words may
potentially start at each frame.
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Connected word recognition

r1 r2 r3r ai t

r1 r2 r3t eh n

r1 r2 r3p ih n

E0
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Viterbi algorithm: connected word recognition
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Add transitions between
all word-final and
word-initial states
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Connected word recognition
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Viterbi decoding finds the
best word sequence

BUT: have to consider
|V |2 inter-word transitions
at every time step
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Integrating the language model

So far we’ve estimated HMM transition probabilities from
audio data, as part of the acoustic model

Transitions between words → use a language model

n-gram language model:

p(wi |hi ) = p(wi |wi−n+1, . . .wi−1)

Integrate the language model directly in the Viterbi search
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Incorporating a bigram language model

r1 r2 r3r ai t

r1 r2 r3t eh n

r1 r2 r3p ih n

P(ten | pin)

P(pin | pin)

P(pin | right)
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Incorporating a bigram language model
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Incorporating a trigram language model

tair

r1 r2 r3t eh n

r1 r2 r3p ih n

r1 r2 r3r ai t

r1 r2 r3t eh n

r1 r2 r3p ih n

r1 r2 r3r ai t

r1 r2 r3t eh n

r1 r2 r3p ih n

P(pin | ten pin)

P(pin | pin pin)

P(ten | pin pin)

P(right | pin ten)

P(right | ten ten)

P(right | ten right )

Need to duplicate HMM
states to incorporate
extended word history
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Computational Issues

Viterbi decoding performs an exact search in an efficient
manner

But exact search is not possible for large vocabulary tasks

Long-span language models and the use of cross-word
triphones greatly increase the size of the search space

Solutions:

Beam search (prune low probability hypotheses)
Tree-structured lexicons
Language model look-ahead
Dynamic search structures
Multipass search (→ two-stage decoding)
Best-first search (→ stack decoding / A∗ search)

Next lecture: an alternative approach using weighted finite
state transducers (WFSTs)
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Pruning
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During Viterbi decoding,
don’t propagate tokens
whose probability falls a
certain amount below the
current best path

Result is only an
approximation to the best
path
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Tree-structured lexicon
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Figure adapted from Ortmans & Ney, “The time-conditioned approach in dynamic programming search for LVCSR”

ASR Lecture 8 Large vocabulary ASR 20



Tree-structured lexicon

s
p

ee

x1 x2

state

time

x3 x4 x5 x6 x7

k
ch

eh
l

ey

spell

speech

say

speak

Reduces the number of
state transition
computations

For clarity, not all the connections are shown
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Language model look-ahead

Aim to make pruning more efficient

In tree-structured decoding, look ahead to find out the best
LM score for any words further down the tree

This information can be pre-computed and stored at each
node in the tree

States in the tree are pruned early if we know that none of the
possibilities will receive good enough probabilities from the
LM.
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Language model look-ahead
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Language model look-ahead
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Push probabilities down the tree (assuming P6 > 55 > . . . > P1))
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Reading

Ortmanns and Ney (2000). “The time-conditioned approach in
dynamic programming search for LVCSR”. In IEEE Transactions on
Speech and Audio Processing

ASR Lecture 8 Large vocabulary ASR 25


