HMM Algorithms

Peter Bell

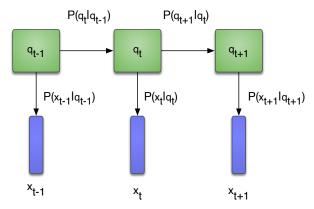
Automatic Speech Recognition— ASR Lecture 5 27 January 2025

Overview

HMM algorithms

- HMM recap
- HMM algorithms (2)
 - Likelihood computation (forward algorithm)
 - Finding the most probable state sequence (Viterbi algorithm)
 - Estimating the parameters (forward-backward and EM algorithms)

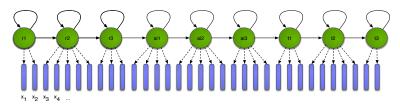
Recap: the HMM



- A generative model for the sequence $X = (x_1, \dots, x_T)$
- Discrete states q_t are unobserved
- ullet q_{t+1} is conditionally independent of q_1,\ldots,q_{t-1} , given q_t
- Observations x_t are conditionally independent of each other, given q_t .

HMMs for ASR

The three-state left-to-right topology for phones:



Computing likelihoods with the HMM

Joint likelihood of X and $Q = (q_1, \ldots, q_T)$:

$$P(X,Q|\lambda) = P(q_1)P(x_1|q_1)P(q_2|q_1)P(x_2|q_2)...$$
 (1)

$$= P(q_1)P(x_1|q_1)\prod_{t=2}^{r} P(q_t|q_{t-1})P(x_t|q_t)$$
 (2)

 $P(q_t)$ denotes the initial occupancy probability of each state

HMM parameters

The parameters of the model, λ , are given by:

- Transition probabilities $a_{kj} = P(q_{t+1} = j | q_t = k)$
- Observation probabilities $b_j(x) = P(x|q=j)$

The three problems of HMMs

Working with HMMs requires the solution of three problems:

- **1 Likelihood** Determine the overall likelihood of an observation sequence $X = (x_1, \dots, x_t, \dots, x_T)$ being generated by a known HMM topology, \mathcal{M} .
 - \rightarrow the forward algorithm
- ② Decoding and alignment Given an observation sequence and an HMM, determine the most probable hidden state sequence → the Viterbi algorithm
- - \rightarrow the *forward-backward* and *EM* algorithms

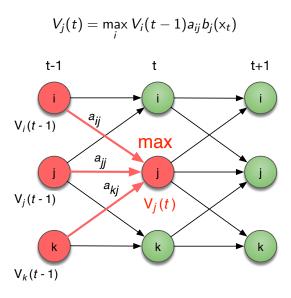
Viterbi algorithm

 Instead of finding the likelihood over all possible state sequences, as we do in the Forward algorithm, just consider just the most probable path:

$$P^*(X|\mathcal{M}) = \max P(X, Q|\mathcal{M})$$

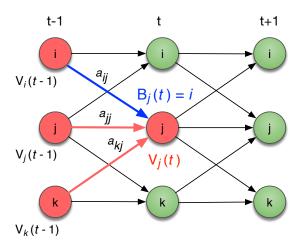
- Define likelihood of the most probable partial path in state j at time t, $V_j(t)$
- If we are performing decoding or forced alignment, then only the most likely path is needed
- We need to keep track of the states that make up this path by keeping a sequence of backpointers to enable a Viterbi backtrace: the backpointer for each state at each time indicates the previous state on the most probable path

Viterbi Recursion



Viterbi Recursion

Backpointers to the previous state on the most probable path



2. Decoding: The Viterbi algorithm

Initialisation

$$V_0(0) = 1$$

 $V_j(0) = 0$ if $j \neq 0$
 $B_j(0) = 0$

Recursion

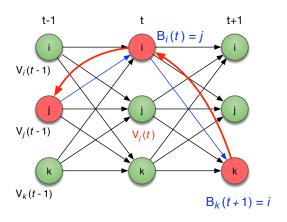
$$\begin{split} V_j(t) &= \max_{i=0}^J V_i(t-1) a_{ij} b_j(\mathsf{x}_t) \\ B_j(t) &= \arg\max_{i=0}^J V_i(t-1) a_{ij} b_j(\mathsf{x}_t) \end{split}$$

Termination

$$V_E = \max_{i=1}^J V_i(T) a_{iE}$$
 $B_E = \arg\max_{i=1}^J V_i(T) a_{iE}$

Viterbi Backtrace

Backtrace to find the state sequence of the most probable path



3. Training: Forward-Backward algorithm

- Goal: Efficiently estimate the parameters of an HMM λ from an observation sequence X and known HMM topology \mathcal{M} :
- Parameters λ :
 - Transition probabilities $a_{kj} = P(q_{t+1} = j | q_t = k)$
 - Observation probabilities $b_j(x) = P(x|q = j)$
- Maximum likelihood training: find the parameters that maximise

$$F_{\mathsf{ML}}(\lambda) = \log P(X|\mathcal{M}, \lambda)$$
$$= \log \sum_{Q \in \mathcal{Q}} P(X, Q|\mathcal{M}, \lambda)$$

Viterbi Training

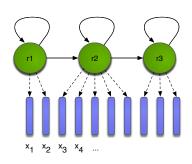
- If we knew the state-time alignment, then each observation feature vector could be assigned to a specific state
- A state-time alignment can be obtained using the most probable path obtained by Viterbi decoding
- Maximum likelihood estimate of a_{ij} , if $C(i \rightarrow j)$ is the count of transitions from i to j

$$\hat{a}_{ij} = \frac{C(i \to j)}{\sum_{k} C(i \to k)}$$

• Define indicator variable $z_{jt}=1$ if the HMM is in state j at time t, and $z_{jt}=0$ otherwise. If we knew the state-time alignment, this variable would be observed, and we could use it to obtain the standard maximum likelihood estimates for the mean of the observation probability distribution:

$$\hat{\mu}_j = \frac{\sum_t z_{jt} \boldsymbol{x}_t}{\sum_t z_{jt}}$$

Example



$$a_{11} = \frac{1}{2}$$
 $a_{12} = \frac{1}{2}$

$$a_{22} = \frac{4}{5}$$
$$a_{23} = \frac{1}{5}$$

$$a_{33} = \frac{2}{3}$$
$$a_{3E} = \frac{1}{3}$$

$$a_{3E}=\frac{1}{3}$$

EM Algorithm

- Viterbi training is an approximation—we would like to consider all possible paths
- In this case rather than having a hard state-time alignment we estimate a probability
- State occupation probability: The probability $\gamma_j(t)$ of occupying state j at time t given the sequence of observations.
- We can use this for an iterative algorithm for HMM training: the EM algorithm
- Application of EM algorithm to HMMs is called 'Baum-Welch algorithm

EM Algorithm

If we have some initial parameters λ_0 and we want to find new parameters to maximise the likelihood $F_{\rm ML}(\lambda)$, then we can instead maximise

$$\sum_{Q \in \mathcal{Q}} P(Q|X, \mathcal{M}, \lambda_0) \log P(X, Q|\mathcal{M}, \lambda)$$

E-step estimate the state occupation probabilities given the current parameters (Expectation)

M-step re-estimate the HMM parameters based on the estimated state occupation probabilities (Maximisation)

Why does this work? See next lecture.

Backward probabilities

 To estimate the state occupation probabilities we need to define (recursively) another set of probabilities—the Backward probabilities

$$\beta_j(t) = p(\mathsf{x}_{t+1}, \ldots, \mathsf{x}_T | q_t = j, \mathcal{M})$$

The probability of future observations given that the HMM is in state j at time t

- These can be recursively computed (going backwards in time)
 - Initialisation

$$\beta_i(T) = a_{iE}$$

Recursion

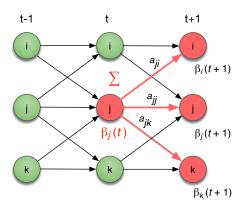
$$\beta_i(t) = \sum_{j=1}^J a_{ij} b_j(\mathsf{x}_{t+1}) \beta_j(t+1)$$
 for $t = T-1, \dots, 1$

Termination

$$p(X | \mathcal{M}) = \beta_0(0) = \sum_{j=1}^{J} a_{0j} b_j(x_1) \beta_j(1) = \alpha_E$$

Backward Recursion

$$eta_j(t) = p(\mathsf{x}_{t+1},\ldots,\mathsf{x}_T \,|\, q_t = j,\mathcal{M}) = \sum_{j=1}^J \mathsf{a}_{ij} \mathsf{b}_j(\mathsf{x}_{t+1}) eta_j(t+1)$$



State Occupation Probability

- The state occupation probability $\gamma_j(t)$ is the probability of occupying state j at time t given the sequence of observations
- Express in terms of the forward and backward probabilities:

$$\gamma_{j}(t) = P(q_{t} = j | \mathsf{X}, \mathcal{M}) = \frac{1}{\alpha_{E}} \alpha_{j}(t) \beta_{j}(t)$$

recalling that $p(X|\mathcal{M}) = \alpha_E$

Since

$$\alpha_{j}(t)\beta_{j}(t) = p(\mathsf{x}_{1},\ldots,\mathsf{x}_{t},q_{t}=j\,|\,\mathcal{M})$$

$$p(\mathsf{x}_{t+1},\ldots,\mathsf{x}_{T}\,|q_{t}=j,\mathcal{M})$$

$$= p(\mathsf{x}_{1},\ldots,\mathsf{x}_{t},\mathsf{x}_{t+1},\ldots,\mathsf{x}_{T},q_{t}=j\,|\,\mathcal{M})$$

$$= p(\mathsf{X},q_{t}=j\,|\,\mathcal{M})$$

$$P(q_t = j | X, \mathcal{M}) = \frac{p(X, q_t = j | \mathcal{M})}{p(X | \mathcal{M})}$$

Re-estimation of transition probabilities

• Similarly to the state occupation probability, we can estimate $\xi_{i,j}(t)$, the probability of being in i at time t and j at t+1, given the observations:

$$\begin{aligned} \xi_{i,j}(t) &= P(q_t = i, q_{t+1} = j \mid \mathsf{X}, \mathcal{M}) \\ &= \frac{p(q_t = i, q_{t+1} = j, \mathsf{X} \mid \mathcal{M})}{p(\mathsf{X} \mid \mathcal{M})} \\ &= \frac{\alpha_i(t) a_{ij} b_j(\mathsf{x}_{t+1}) \beta_j(t+1)}{\alpha_E} \end{aligned}$$

We can use this to re-estimate the transition probabilities

$$\hat{a}_{ij} = \frac{\sum_{t=1}^{T} \xi_{i,j}(t)}{\sum_{k=1}^{J} \sum_{t=1}^{T} \xi_{i,k}(t)}$$

• See next lecture for re-estimation of obervation probabilities $b_i(x)$

Pulling it all together

 Iterative estimation of HMM parameters using the EM algorithm. At each iteration

E step For all time-state pairs

- Recursively compute the forward probabilities $\alpha_i(t)$ and backward probabilities $\beta_i(t)$
- **②** Compute the state occupation probabilities $\gamma_j(t)$ and $\xi_{i,j}(t)$
- M step Based on the estimated state occupation probabilities re-estimate the HMM parameters: transition probabilities a_{ij} and parameters of the obervation probabilities, $b_i(x)$
- The application of the EM algorithm to HMM training is sometimes called the Forward-Backward algorithm or Baum-Welch algorithm

Extension to a corpus of utterances

- We usually train from a large corpus of R utterances
- If \mathbf{x}_t^r is the tth frame of the rth utterance \mathbf{X}^r then we can compute the probabilities $\alpha_j^r(t)$, $\beta_j^r(t)$, $\gamma_j^r(t)$ and $\xi_{i,j}^r(t)$ as before
- The re-estimates are as before, except we must sum over the *R* utterances, ie:

$$\hat{a}_{ij} = \frac{\sum_{r=1}^{R} \sum_{t=1}^{T} \xi_{i,j}^{r}(t)}{\sum_{r=1}^{R} \sum_{k=1}^{J} \sum_{t=1}^{T} \xi_{i,k}^{r}(t)}$$

• In addition, we usually employ "embedded training", in which fine tuning of phone labelling with "forced Viterbi alignment" or forced alignment is involved. (For details see Section 9.7 in Jurafsky and Martin's SLP)

Summary: HMMs

- HMMs provide a generative model for statistical speech recognition
- Three key problems
 - Occupation the overall likelihood: the Forward algorithm
 - ② Decoding the most likely state sequence: the Viterbi algorithm
 - Sestimating the most likely parameters: the EM (Forward-Backward) algorithm
- Solutions to these problems are tractable due to the two key HMM assumptions
 - Conditional independence of observations given the current state
 - Markov assumption on the states

References: HMM algorithms

- * Jurafsky and Martin (2008). Speech and Language Processing (2nd ed.): section 9.7. (Also 9.5, 9.6, 9.8 for introduction to decoding)
- Gales and Young (2007). "The Application of Hidden Markov Models in Speech Recognition", Foundations and Trends in Signal Processing, 1 (3), 195–304: sections 1, 2.1, 2.2.