Automatic Speech Recognition: Introduction

Peter Bell

Automatic Speech Recognition— ASR Lecture 1
13 January 2025

Automatic Speech Recognition — ASR

Course details

- Lectures: 18 lectures, delivered in person
- Labs: Weekly lab sessions using Python, OpenFst (openfst.org) and later Kaldi (kaldi-asr.org)
 - Lab sessions will start in Week 3
- Assessment:
 - First five lab sessions worth 10%
 - Coursework, building on the lab sessions, worth 40%
 - *Closed* book exam in April or May worth 50%

http://www.inf.ed.ac.uk/teaching/courses/asr/

Automatic Speech Recognition — ASR

Course details

People:

• Course organiser: Peter Bell

• Assistant lecturer: Hao Tang

• Guest lecturer: Ondrej Klejch

• TA: Yi Wang

Demonstrators: Emily Gaughan, Yen Meng, Adaeze Adigwe

Lectures

18 lectures in total

- 3 lectures delivered by Hao, including: Signal Signal Analysis (lectures 2-3) and Self Supervised Learning for Speech (lecture 17)
- 1 guest lecture delivered by Ondrej on a cutting-edge research topic (lecture 15)
- The remaining 14 lectures delivered by me

Labs

- Series of weekly labs using Python, OpenFst and Kaldi
- They count towards 10% of the course credit
- Labs start week 3 expected to be four lab groups
- You will need to work in pairs
- Labs 1-5 will give you hands-on experience of using HMM algorithms to build your very own ASR system from scratch
 - These labs are an important pre-requisite for the coursework take advantage of the demonstrator support!
- Later optional labs will introduce you to Kaldi recipes for training acoustic models – useful if you will be doing an ASR-related research project

Other teaching support

- Teaching assistant Yi Wang will help with lab and coursework setup, answering questions online and marking the lab submissions
- We use Piazza, and aim for a quick response time throughout the semester and right up until the exam
- I don't run regular office hours but am happy to meet any students by arrangement at almost any time (individually or in a group)

Your background

If you have taken:

- Speech Processing and either of (MLPR or MLP)
 - Perfect!
- either of (MLPR or MLP) but not Speech Processing (probably you are from Informatics)
 - You'll require some speech background:
 - A couple of the lectures will cover material that was in Speech Processing, particularly related to signal processing
 - Some additional background study (including material from Speech Processing)
- Speech Processing but neither of (MLPR or MLP) (probably you are from SLP)
 - You'll benefit from gaining some machine learning background (especially neural networks)
 - A couple of introductory lectures on neural networks provided for SLP students
 - Some additional background study might be needed

What is speech recognition?

What is speech recognition?

What is speech recognition?

Speech-to-text transcription

- Transform recorded audio into a sequence of words
- Just the words, no meaning.... But do need to deal with acoustic ambiguity: "Recognise speech?" or "Wreck a nice beach?"

Sometimes also considering...

- Speaker diarization: Who spoke when?
- Speech recognition: what did they say?
- Paralinguistic aspects: how did they say it? (timing, intonation, voice quality)
- Speech understanding: what does it mean?

What we won't cover

What we won't cover

pip install git+https://github.com/m-bain/whisperx.git

If already installed, update package to most recent commit

pip install git+https://github.com/m-bain/whisperx.git --upgrade

If wishing to modify this package, clone and install in editable mode:

```
$ git clone https://github.com/m-bain/whisperX.git
```

Q

- \$ cd whisperX
- \$ pip install -e .

You may also need to install ffmpeg, rust etc. Follow openAl instructions here https://github.com/openai/whisper#setup.

What we won't cover

Python usage 3

```
ďО
import whisperx
import gc
device = "cuda"
audio file = "audio.mp3"
batch size = 16 # reduce if low on GPU mem
compute_type = "float16" # change to "int8" if low on GPU mem (may reduce accuracy)
# 1. Transcribe with original whisper (batched)
model = whisperx.load model("large-v2", device, compute type=compute type)
# save model to local path (optional)
# model dir = "/path/"
# model = whisperx.load_model("large-v2", device, compute_type=compute_type, download_root=n
audio = whisperx.load audio(audio file)
result = model.transcribe(audio, batch_size=batch_size)
print(result["segments"]) # before alignment
```

10

Teaching philosophy

- We don't just focus on cutting-edge methods aim to give you a thorough understanding of how the field developed from the 1980s onwards
- Most lectures focus on the underlying theory, though some are on particular applied topics
- Emphasis on learning by doing, using the labs and coursework
- Course materials are largely self-contained, though the recommended reading will improve your understanding

Why is speech recognition difficult?

Many sources of variation

Speaker Tuned for a particular speaker, or speaker-independent? Adaptation to speaker characteristics, eg. age, gender, vocal tract length

Many sources of variation

Speaker Tuned for a particular speaker, or speaker-independent? Adaptation to speaker characteristics, eg. age, gender, vocal tract length

Environment Noise, competing speakers, channel conditions (microphone, phone line, room acoustics)

Many sources of variation

Speaker Tuned for a particular speaker, or speaker-independent? Adaptation to speaker characteristics, eg. age, gender, vocal tract length

Environment Noise, competing speakers, channel conditions (microphone, phone line, room acoustics)

Style Continuously spoken or isolated? Planned monologue or spontaneous conversation?

Many sources of variation

Speaker Tuned for a particular speaker, or speaker-independent? Adaptation to speaker characteristics, eg. age, gender, vocal tract length

Environment Noise, competing speakers, channel conditions (microphone, phone line, room acoustics)

Style Continuously spoken or isolated? Planned monologue or spontaneous conversation?

Vocabulary Machine-directed commands, scientific language, colloquial expressions

Many sources of variation

Speaker Tuned for a particular speaker, or speaker-independent? Adaptation to speaker characteristics, eg. age, gender, vocal tract length

Environment Noise, competing speakers, channel conditions (microphone, phone line, room acoustics)

Style Continuously spoken or isolated? Planned monologue or spontaneous conversation?

Vocabulary Machine-directed commands, scientific language, colloquial expressions

Accent/dialect Within-language accent variation, non-native speakers

Many sources of variation

Speaker Tuned for a particular speaker, or speaker-independent? Adaptation to speaker characteristics, eg. age, gender, vocal tract length

Environment Noise, competing speakers, channel conditions (microphone, phone line, room acoustics)

Style Continuously spoken or isolated? Planned monologue or spontaneous conversation?

Vocabulary Machine-directed commands, scientific language, colloquial expressions

Accent/dialect Within-language accent variation, non-native speakers

Other paralinguistic Emotion, socio-economic background, ...

```
Many sources of variation
```

- Speaker Tuned for a particular speaker, or speaker-independent? Adaptation to speaker characteristics, eg. age, gender, vocal tract length
- Environment Noise, competing speakers, channel conditions (microphone, phone line, room acoustics)
 - Style Continuously spoken or isolated? Planned monologue or spontaneous conversation?
 - Vocabulary Machine-directed commands, scientific language, colloquial expressions
- Accent/dialect Within-language accent variation, non-native speakers
- Other paralinguistic Emotion, socio-economic background, ...
- Language spoken Estimated 7,000 languages, most with limited training resources; code-switching; language change

ASR Lecture 1 Automatic Speech Recognition: Introduction

 As a classification problem: very high dimensional output space

- As a classification problem: very high dimensional output space
- As a sequence-to-sequence problem: very long input sequence (although limited re-ordering between acoustic and word sequences)

- As a classification problem: very high dimensional output space
- As a sequence-to-sequence problem: very long input sequence (although limited re-ordering between acoustic and word sequences)
- Data is often noisy, with many "nuisance" factors of variation in the data

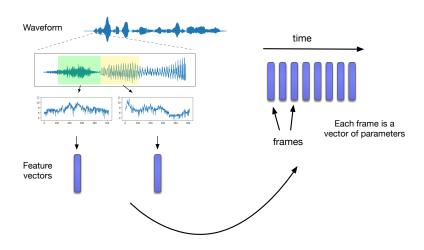
- As a classification problem: very high dimensional output space
- As a sequence-to-sequence problem: very long input sequence (although limited re-ordering between acoustic and word sequences)
- Data is often noisy, with many "nuisance" factors of variation in the data
- Very limited quantities of training data available (in terms of words) compared to text-based NLP
 - Manual speech transcription is very expensive (10x real time)

- As a classification problem: very high dimensional output space
- As a sequence-to-sequence problem: very long input sequence (although limited re-ordering between acoustic and word sequences)
- Data is often noisy, with many "nuisance" factors of variation in the data
- Very limited quantities of training data available (in terms of words) compared to text-based NLP
 - Manual speech transcription is very expensive (10x real time)
- Hierachical and compositional nature of speech production and comprehension makes it difficult to handle with a single model

The speech recognition problem

- We generally represent recorded speech as a sequence of acoustic feature vectors (observations), X and the output word sequence as W
- At recognition time, our aim is to find the most likely W, given X
- To achieve this, statistical models are trained using a corpus of labelled training utterances (X^n, W^n)

Representing recorded speech (X)



Represent a recorded utterance as a sequence of feature vectors Reading: Jurafsky & Martin section 9.3

Acoustic units

Phonemes

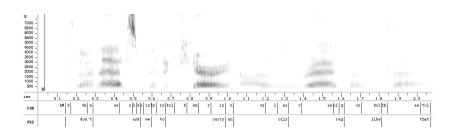
- abstract unit defined by linguists based on contrastive role in word meanings (eg "pat" vs "bat")
- 40-50 phonemes in English

Phones

- speech sounds defined by the acoustics
- phones may be allophones of the same phoneme (eg /p/ in "pit" and "spit")
- limitless in number
- Possible alternatives: syllables, characters ("graphemes"), automatically derived units, ...

(Slide taken from Martin Cooke from long ago)

Labelling speech (W)



Labels may be at different levels: words, phones, sentences, etc. Labels may or may not be *time-aligned* – do we know the start and end times of an acoustic segment corresponding to a label?

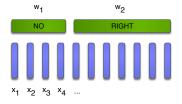
Reading: Jurafsky & Martin chapter 7 (especially sections 7.4, 7.5)

In **training** the model:

Aligning the sequences X^n and W^n for each training utterance

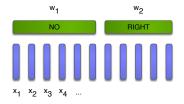
In **training** the model:

Aligning the sequences X^n and W^n for each training utterance



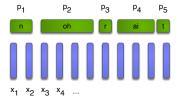
In **training** the model:

Aligning the sequences X^n and W^n for each training utterance



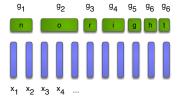
In **training** the model:

Aligning the sequences X^n and W^n for each training utterance



In **training** the model:

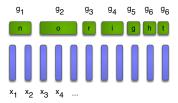
Aligning the sequences X^n and W^n for each training utterance



Two machine learning challenges

In training the model:

Aligning the sequences X^n and W^n for each training utterance



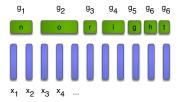
In performing recognition:

Searching over all possible output sequences W to find the most likely one

Two machine learning challenges

In training the model:

Aligning the sequences X^n and W^n for each training utterance

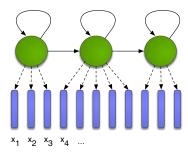


In performing recognition:

Searching over all possible output sequences W to find the most likely one

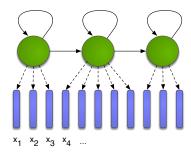
The **hidden Markov model** (HMM) provides a good solution to both problems

The Hidden Markov Model



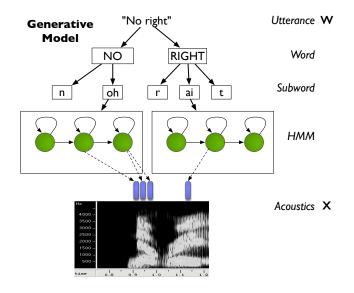
- A simple but powerful model for mapping a sequence of continuous observations to a sequence of discrete outputs
- It is a generative model for the observation sequence also a noisy channel model
- Algorithms for training (forward-backward) and recognition-time decoding (Viterbi)

The Hidden Markov Model



- A simple but powerful model for mapping a sequence of continuous observations to a sequence of discrete outputs
- It is a generative model for the observation sequence also a noisy channel model
- Algorithms for training (forward-backward) and recognition-time decoding (Viterbi)
- Later in the course we will also look at newer all-neural. fully-differentiable "end-to-end" models

Hierarchical modelling of speech



"Fundamental Equation of Statistical Speech Recognition"

If X is the sequence of acoustic feature vectors (observations) and W denotes a word sequence, the most likely word sequence W^{\ast} is given by

$$W^* = \arg \max_{W} P(W \mid X)$$

"Fundamental Equation of Statistical Speech Recognition"

If X is the sequence of acoustic feature vectors (observations) and W denotes a word sequence, the most likely word sequence W^{\ast} is given by

$$\mathsf{W}^* = \arg\max_{\mathsf{W}} P(\mathsf{W} \mid \mathsf{X})$$

Applying Bayes' Theorem:

$$P(W \mid X) = \frac{p(X \mid W)P(W)}{p(X)}$$

$$\propto p(X \mid W)P(W)$$

$$W^* = \arg \max_{W} \underbrace{p(X \mid W)}_{Acoustic} \underbrace{P(W)}_{Language}$$

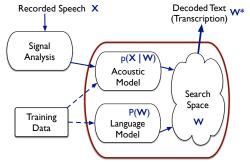
$$model$$

$$model$$

Speech Recognition Components

$$\mathsf{W}^* = \arg\max_{\mathsf{W}} p(\mathsf{X} \mid \mathsf{W}) P(\mathsf{W})$$

Use an acoustic model, language model, and lexicon to obtain the most probable word sequence W^{\ast} given the observed acoustics X



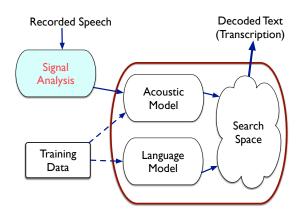
Evaluation

- How accurate is a speech recognizer?
- String edit distance
 - Use dynamic programming to align the ASR output with a reference transcription
 - Three type of error: insertion, deletion, substitutions
- Word error rate (WER) sums the three types of error. If there are N words in the reference transcript, and the ASR output has S substitutions, D deletions and I insertions, then:

$$WER = 100 \cdot \frac{S + D + I}{N} \% \qquad Accuracy = 100 - WER\%$$

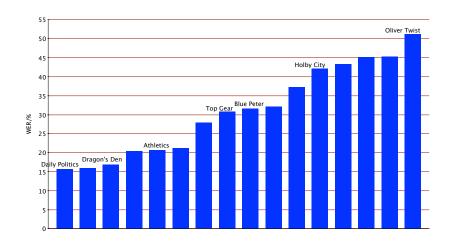
 Speech recognition evaluations: common training and development data, release of new test sets on which different systems may be evaluated using word error rate

Next Lecture

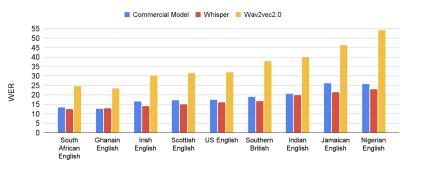


Example 1: recognising TV broadcasts (2015)

Example 1: recognising TV broadcasts (2015)



Example 2: recognising conversations (2023)



Reading

- Jurafsky and Martin (2008). Speech and Language Processing (2nd ed.): Chapter 7 (esp 7.4, 7.5) and Section 9.3.
- General interest:
 - The Economist Technology Quarterly, "Language: Finding a Voice", Jan 2017.
 - http://www.economist.com/technology-quarterly/2017-05-01/language
 - The State of Automatic Speech Recognition: Q&A with Kaldi's Dan Povey, Jul 2018.

```
https://medium.com/descript/the-state-of-automatic-speech-recognition-q-a-with-kaldis-dan-povey-c860aada9b85
```