Unsupervised Raw Waveform Modelling: Self-supervised learning for Speech

Yumnah Mohamied

Automatic speech recognition – ASR lecture 18 21 March 2024

Divide and Conquer Strategy

- Conventional ASR consists of composite subsystems trained and designed independently.
- Separates out feature extraction, acoustic modelling and decoding steps.
- Feature extraction is hand-crafted based on prior knowledge of speech production and/or perception.

End-to-end systems

But we can extend end-to-end concept in the other direction: learnable feature extractor

End-to-end systems

Feature learning from the raw waveform

- Divide and conquer strategy was overwhelmingly outperformed by feature learning in image processing.
- The deep learning revolution: ability to train with raw signal with improved performance - no longer need to handcraft features.

Feature learning from the raw waveform

- HMM/GMM: sensitive to input features
 - Needs to be decorrelated to use a diagonal covariance matrix
 - Dimension needs to be low
- Expert knowledge of speech production/perception led to range of feature extraction pipelines: MFCC, log-mel, PLP, gammatone ...
- Hybrid HMM/DNN don't have these constraints.
- Features designed from perceptual evidence is not guaranteed to be best features in a statistical modelling framework.
- Information loss from raw signal: models trained with a combination of hand-crafted features outperform those trained with a single feature type.

Supervised feature learning

- Feature learning part of the acoustic model: input is raw waveform.
- Can use DNN
 - But high-resolution and temporal aspect of raw waveform makes CNNs a better choice (reduces learnable parameters).
 - Then add a fully connected layer + softmax for classification and output probabilities.
- Can use LSTM directly with raw waveform for temporal modelling
 - But higher-level modelling of the input features helps to disentangle underlying factors of variation within the input.
 - Requires unrolling LSTM for an infeasibly large number of steps
 - Precede with CNN layers.
- Combine CNN layers, LSTM and DNN layers and train altogether: CLDNN
- Performance comes close to hand-crafted features

Unsupervised Feature learning

- Feature learning step is separate to the acoustic model or end-to-end system – therefore no labels
- Goal: learn a representation from the raw waveform that is then frozen after training, and input into an ASR system as a replacement to handcrafted features.
- Leverage large amounts of unlabelled data to learn a general representation – features are not task specific.

SSL learning algorithm:

The landscape of SSL for speech

SSL learning algorithm:

Pretext task:	Contrastive methods (CPC)	Student-teacher methods (BYOL)	Deep clustering	Auto-encoding (input != raw waveform)
Masked acoustic modelling	wav2vec 2.0	Data2vec	HuBERT	TERA
	wav2vec	BPC		
Auto-regressive	VQ-wav2vec			

Contrastive methods

CPC wav2vec VQ-wav2vec Wav2vec 2.0

Contrastive Predictive Coding

- Intuition: learn representations that encode the underlying shared information between different parts of the high-dimensional speech signal
 - > Maximise the Mutual Information
- CPC loss objective operates in latent space: it is challenging to predict (i.e. generate) high-dimensional data.
 - Unimodal losses (MSE) are not adept (introduces too much blurring)
 - Powerful generative models that reconstruct every detail would be required: computational intense and waste capacity at modelling complex relationships in the data.

CPC in context of autoregressive modelling

- Autoregressive pretext task: learn to predict observations in the future, *x*, from an encoded context window in the present, *c*.
 - Future observations, *x*, are the "labels" created from the data
- Modelling p(x|c) (a generative model) to predict x, may not be optimal for extracting shared information between x and c.

 We encode x and c, into compact representations which maximally preserve MI of the original signals - we extract underlying latent variables that x and c have in common

Loss operates on these latent variables of x and c

CPC: Maximising Mutual Information

• MI given by:

$$I(x;c) = \sum_{x,c} p(x,c) \log rac{p(x|c)}{p(x)}.$$

• Model a density ratio, *f*, that preserves MI (use a simple log-bilinear model):

$$f_k(x_{t+k}, c_t) \propto \frac{p(x_{t+k}|c_t)}{p(x_{t+k})} \qquad f_k(x_{t+k}, c_t) = \exp\left(z_{t+k}^T W_k c_t\right),$$

 Using a density ratio, and inferring z with an encoder, means the model does not need to model the high-dimensional x.

CPC: InfoNCE (noise contrastive loss)

- We cannot evaluate p(x) or p(x|c) directly, but we can sample from these distributions
- One positive sample from p(x|c), and N negative samples from the proposal distribution p(x) (random frame encodings within and across utterances)

$$\mathcal{L}_{\mathrm{N}} = - \mathop{\mathbb{E}}_{X} \left[\log \frac{f_k(x_{t+k}, c_t)}{\sum_{x_j \in X} f_k(x_j, c_t)} \right] \qquad \qquad f_k(x_{t+k}, c_t) = \exp\left(z_{t+k}^T W_k c_t\right),$$

$$\mathcal{L}_k = -\sum_{i=1}^{T-k} \left(\log \sigma(\mathbf{z}_{i+k}^\top h_k(\mathbf{c}_i)) + \lambda \mathop{\mathbb{E}}_{\mathbf{\tilde{z}} \sim p_n} [\log \sigma(-\mathbf{\tilde{z}}^\top h_k(\mathbf{c}_i))] \right)$$

Categorical cross-entropy loss of classifying the positive sample correctly

wav2vec

ASR Lecture 18 Unsupervised Raw Waveform Modelling

wav2vec

- Predict K steps into future
- Sample N negative z
- Model trained to discriminate the true predicted z from negative distractor samples

- Discretize the latent encoding of the raw audio, z, and pass this into aggregator to generate context c.
- Model still trained with categorical cross-entropy loss want to predict future encoding z, from context vector c, and use negative samples to form the contrastive loss.
- Loss function has additional terms for the quantization module.

VQ-wav2vec: loss function

wav2vec 2.0 – masked acoustic modelling

Deep clustering and masked prediction

HuBERT: Hidden Unit BERT

HuBERT

HuBERT: Clustering happens offline (MFCC)

https://blog.devgenius.io/hubert-explained-6ec7c2bf7lfc

HuBERT: Clustering happens offline (latents)

https://blog.devgenius.io/hubert-explained-6ec7c2bf7lfc

Student – Teacher

BYOL Data2vec BPC

Bootstrap Your Own Latent (BYOL)

Iteratively train target network, parametrized as a moving average of online:

$$\xi \leftarrow \tau \xi + (1 - \tau) \theta$$

Data2vec

Student / online

Teacher / Target

Take the wav2vec 2.0 architecture, insert into model, f_{θ}

Data2vec

Bootstrap Predictive Coding (BPC)

- Take the wav2vec base architecture, insert into model, f_{θ}
- "Augmented views": future context of 70ms (student) and past context of 210ms (teacher)

Bootstrap Predictive Coding (BPC)

- Take the wav2vec base architecture, insert into model, f_{θ}
- "Augmented views": future context of 70ms (student) and past context of 210ms (teacher)

Summary

- Supervised feature learning embedded within the ASR system not competitive with state-ofthe-art systems that use handcrafted features.
- Self-supervised learning to extract a latent representation for features is a powerful approach minimizing information loss from the raw signal and leveraging large amounts of unlabelled data.
- Covered contrastive and non-contrastive SSL methods, and two pretext tasks: masked acoustic modelling and autoregressive modelling. All methods apply loss to the latent representations.
- Background reading:
 - A van den Oord et al (2018) "Representation learning with Contrastive Predictive Coding". *Arxiv*.
 - A Baevski et al (2020). "wav2vec 2.0: A framework for self-supervised learning of speech representations. *NeurIPS*.
 - W Hsu et al (2021). "HuBERT: Self-supervised speech representation learning by masked prediction of hidden units". IEEE/ACM Transactions on Audio, Speech and Language processing.
 - JB Grill et al (2020). "Bootstrap your own latent: A new approach to self-supervised learning". *NeurIPS*.
 - A Baevski et al (2022). "Data2vec: A general framework for self-supervised learning in speech, vision and language". *ICML*.
 - Y Mohamied and P Bell (2024). "Bootstrap Predictive Coding: Investigating a noncontrastive self-supervised learning approach". *ICASSP*.