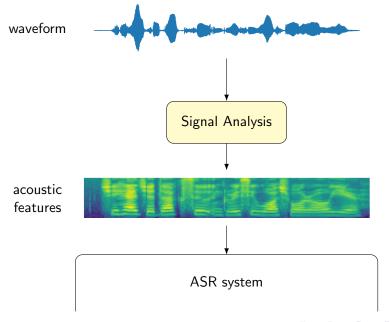
Speech Signal Analysis 1

Hao Tang

Automatic Speech Recognition—ASR Lecture 2 18 January 2024



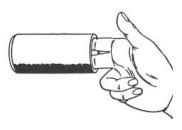
Outline

- Waveforms
 - Dithering
 - Removing DC offset
 - Pre-emphasis
- Spectrograms
 - Discrete Fourier transform (DFT)
 - Linearity and the shift theorem
 - Short-time Fourier transform
 - Windowing

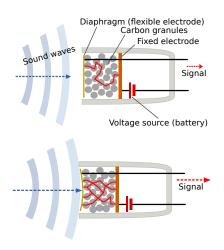
- Speech is part of sound waves.
- If we want to study speech, we need to be able to record, replay, and visualize speech.

Phonautograph (1857)

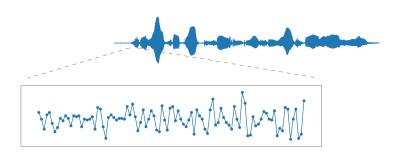
Phonograph (1877)



Carbon Microphone (1877)

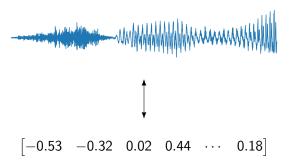


Wave Samples



- Sound waves are sampled and quantized.
- The typical sampling rate is 16,000 Hz. Each sample is typically a 16-bit integer.
- We will use x[t] to denote the t-th sample in the signal x.

Line Plots and Vectors



Common Preprocessing in the Time Domain

Dithering

$$y[t] = x[t] + \epsilon$$
 $\epsilon \sim \mathcal{N}(0, 1)$

- Add a little Gaussian noise to the signal.
- Avoid the signal being zeros, since we will be taking logarithm at some point.
- Removing DC offset

$$y[t] = x[t] - \frac{1}{T} \sum_{i=1}^{T} x[i]$$

- Ensure that the signal has mean zero.
- Most processing assumes the signal to have zero mean.

Common Preprocessing in the Time Domain

Pre-emphasis

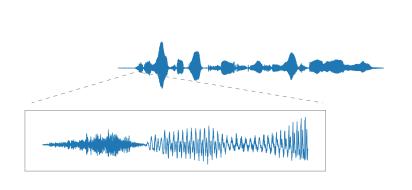
$$y[t] = x[t] - 0.97 \cdot x[t-1]$$

- Emphasize the high-frequency components.
- We will come back to this after we talked about frequency analysis.

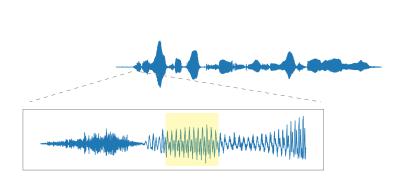
Ohm's Acoustic Law (1843)

If you hear a pitch of a certain frequency, then there must be energy of that frequency present in the sound wave.

Periodicity in Speech



Periodicity in Speech



$$X[k] = \sum_{t=0}^{T-1} x[t] e^{-i2\pi tk/T}$$
 for $k = 0, ..., T-1$, and $i = \sqrt{-1}$

$$X[k] = \sum_{t=0}^{T-1} x[t]e^{-i2\pi tk/T}$$
 for $k = 0, ..., T-1$, and $i = \sqrt{-1}$

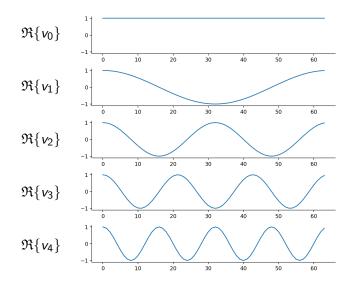
$$X[k] = \begin{bmatrix} e^{i2\pi k \cdot 0/T} & e^{i2\pi k \cdot 1/T} & \cdots & e^{i2\pi k \cdot (T-1)/T} \end{bmatrix}^* \begin{bmatrix} x[0] \\ x[1] \\ \vdots \\ x[T-1] \end{bmatrix}$$

$$X[k] = \sum_{t=0}^{T-1} x[t]e^{-i2\pi tk/T}$$
 for $k = 0, ..., T-1$, and $i = \sqrt{-1}$

$$X[k] = \begin{bmatrix} e^{i2\pi k \cdot 0/T} & e^{i2\pi k \cdot 1/T} & \cdots & e^{i2\pi k \cdot (T-1)/T} \end{bmatrix}^* \begin{bmatrix} x[0] \\ x[1] \\ \vdots \\ x[T-1] \end{bmatrix}$$

$$v_k \triangleq \begin{bmatrix} e^{i2\pi k \cdot 0/T} & e^{i2\pi k \cdot 1/T} & \cdots & e^{i2\pi k \cdot (T-1)/T} \end{bmatrix}$$

$$e^{i\theta} = \cos \theta + i \sin \theta$$



• The larger the k, the higher the frequency.

$$v_k = \begin{bmatrix} e^{i2\pi k \cdot 0/T} & e^{i2\pi k \cdot 1/T} & \cdots & e^{i2\pi k \cdot (T-1)/T} \end{bmatrix}$$

• The larger the k, the higher the frequency.

$$v_k = \begin{bmatrix} e^{i2\pi k \cdot 0/T} & e^{i2\pi k \cdot 1/T} & \cdots & e^{i2\pi k \cdot (T-1)/T} \end{bmatrix}$$

• The set $\{v_0/T, v_1/T, \dots, v_{T-1}/T\}$ is an orthonormal basis.

$$v_m^* v_n = \begin{cases} 0 & \text{if } m \neq n \\ T & \text{if } m = n \end{cases}$$

• The larger the k, the higher the frequency.

$$v_k = \begin{bmatrix} e^{i2\pi k \cdot 0/T} & e^{i2\pi k \cdot 1/T} & \cdots & e^{i2\pi k \cdot (T-1)/T} \end{bmatrix}$$

• The set $\{v_0/T, v_1/T, \dots, v_{T-1}/T\}$ is an orthonormal basis.

$$v_m^* v_n = \begin{cases} 0 & \text{if } m \neq n \\ T & \text{if } m = n \end{cases}$$

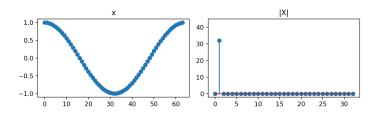
• Fourier transform is a change of coordinates.

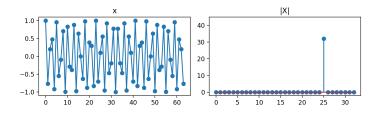
$$X[k] = \sum_{t=0}^{T-1} x[t]e^{-i2\pi tk/T} = v_k^* x$$

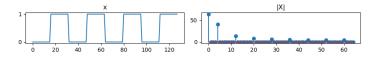
- X[k] is a complex number.
- X[k] is a (complex) dot product of a complex sinusoid v_k and the signal x.
- X[k] tells us how similar x is to v_k .
- The large k's in X are high-frequency components, while the small k's in X are low-frequency components.

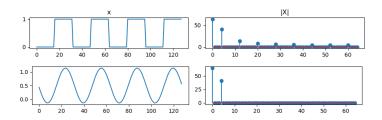
$$X = \mathcal{F}\{x\}$$

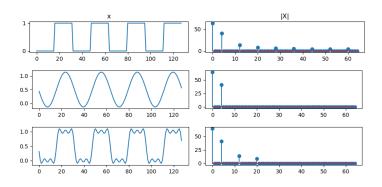
- DFT decomposes a signal into frequency components.
- *X* is also called the spectrum of *x*.

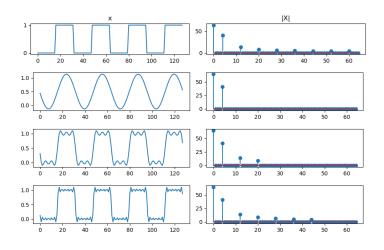


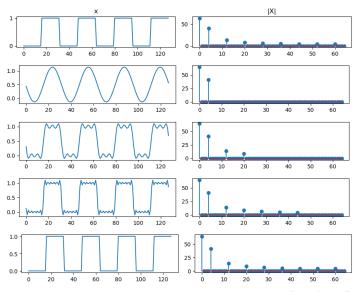












Properties of DFT

Linearity

$$\mathcal{F}\{a_1x_1 + a_2x_2\} = a_1\mathcal{F}\{x_1\} + a_2\mathcal{F}\{x_2\}$$

Properties of DFT

Linearity

$$\mathcal{F}\{a_1x_1 + a_2x_2\} = a_1\mathcal{F}\{x_1\} + a_2\mathcal{F}\{x_2\}$$

Shift Theorem

If
$$y[t] = x[t-1]$$
, then $Y[k] = e^{i2\pi k/T}X[k]$.

$$Y[k] = \sum_{t=0}^{T-1} y[t] e^{-i2\pi tk/T}$$

$$Y[k] = \sum_{t=0}^{T-1} y[t] e^{-i2\pi tk/T}$$
$$= \sum_{t=0}^{T-1} x[t-1] e^{-i2\pi tk/T}$$

$$Y[k] = \sum_{t=0}^{T-1} y[t]e^{-i2\pi tk/T}$$

$$= \sum_{t=0}^{T-1} x[t-1]e^{-i2\pi tk/T}$$

$$= e^{-i2\pi k/T} \sum_{t=0}^{T-1} x[t-1]e^{-i2\pi (t-1)k/T}$$

$$Y[k] = \sum_{t=0}^{T-1} y[t]e^{-i2\pi tk/T}$$

$$= \sum_{t=0}^{T-1} x[t-1]e^{-i2\pi tk/T}$$

$$= e^{-i2\pi k/T} \sum_{t=0}^{T-1} x[t-1]e^{-i2\pi (t-1)k/T}$$

$$= e^{-i2\pi k/T} X[k]$$

Pre-emphasis

Definition

$$y[t] = x[t] - 0.97 \cdot x[t-1]$$

Pre-emphasis

Definition

$$y[t] = x[t] - 0.97 \cdot x[t-1]$$

DFT of pre-emphasis

$$Y[k] = X[k] - 0.97 \cdot e^{-i2\pi k/T} X[k]$$

= $(1 - 0.97 \cdot e^{-i2\pi k/T}) X[k]$

Pre-emphasis

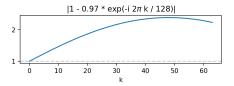
Definition

$$y[t] = x[t] - 0.97 \cdot x[t-1]$$

DFT of pre-emphasis

$$Y[k] = X[k] - 0.97 \cdot e^{-i2\pi k/T} X[k]$$

= $(1 - 0.97 \cdot e^{-i2\pi k/T}) X[k]$



Pre-emphasis

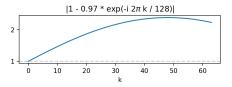
Definition

$$y[t] = x[t] - 0.97 \cdot x[t-1]$$

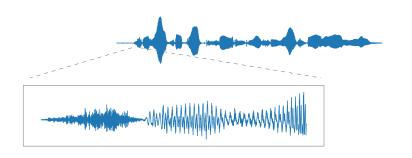
DFT of pre-emphasis

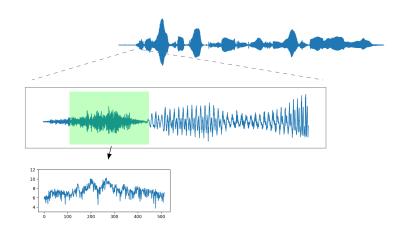
$$Y[k] = X[k] - 0.97 \cdot e^{-i2\pi k/T} X[k]$$

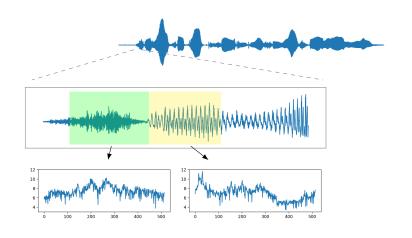
= $(1 - 0.97 \cdot e^{-i2\pi k/T}) X[k]$

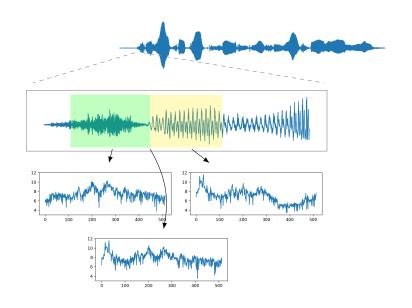


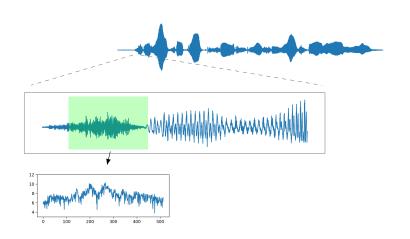
 In other words, pre-emphasis emphsizes the high-frequency region.

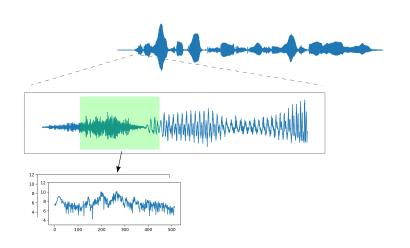


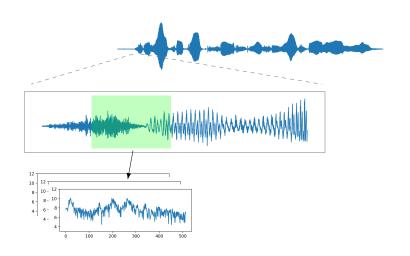


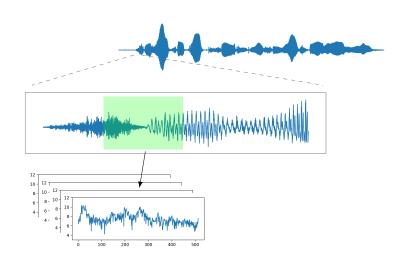


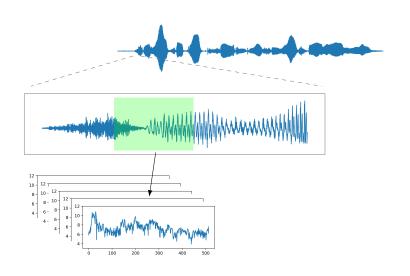


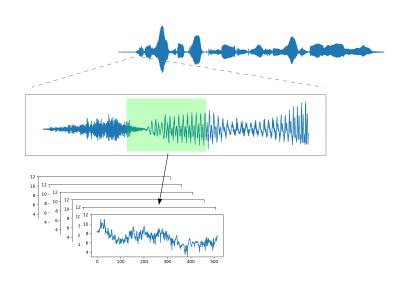


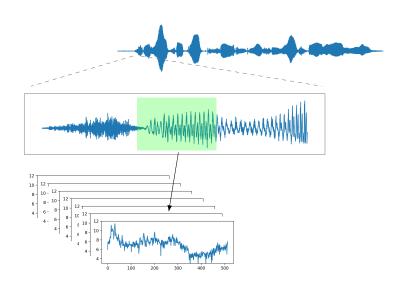


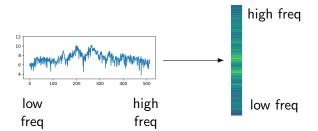


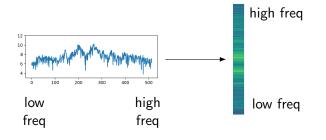


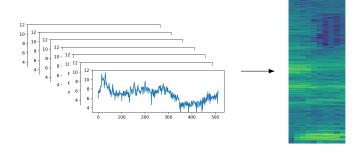




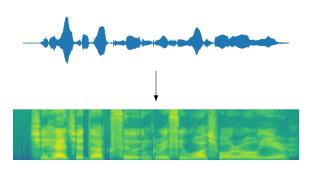




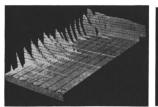


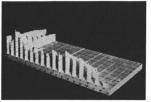


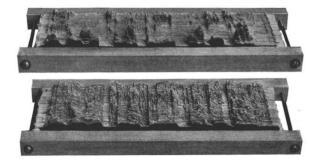
Short-Time Fourier Transform



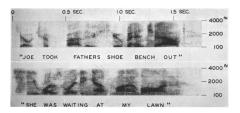
- Speech is non-stationary.
- Extract spectra with a sliding window, typically with a 25ms window size and a 10ms hop.
- Display the spectra as a heat map.

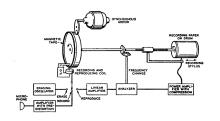






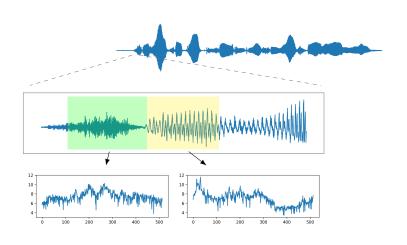
Sound Spectrograph (1946)

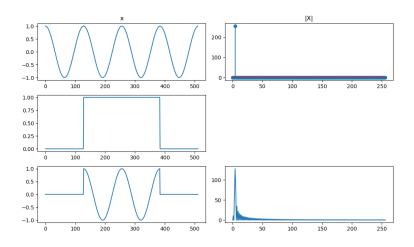


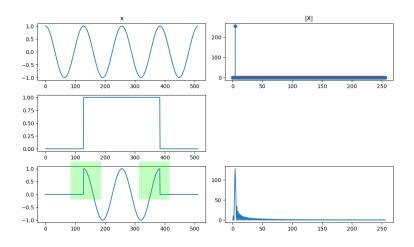


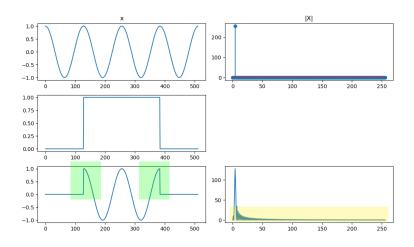
Fast Fourier Transform (1965)

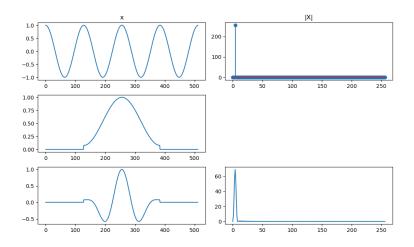
- The algorithm that we know of today was proposed in 1965.
- It was applied to speech on a computer around 1969.

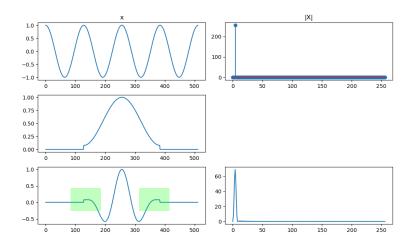




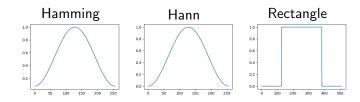




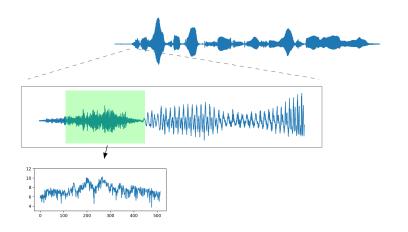


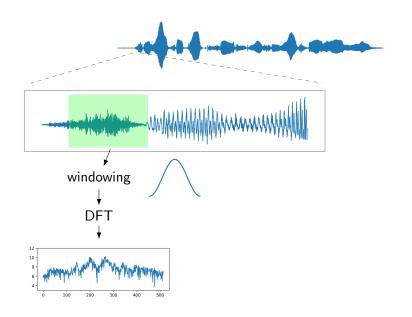


$$y[t] = x[t] \cdot w[t]$$

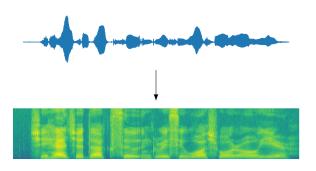


- The signal w is called a window.
- Windowing is elementwise product.





Spectrogram



- dithering, removing DC offset, pre-emphasis
- windowing
- Discrete Fourier transform (DFT)
- Short-time Fourier transform (STFT)

Further Reading

- Chapter 1–5, Oppenheim, Willsky, and Nawab, "Signals and Systems," 1997
- Chapter 2, O'Shaughnessy, "Speech Communications: Human and Machine," 2000